4,937 research outputs found

    Mapping the Berry Curvature from Semiclassical Dynamics in Optical Lattices

    Full text link
    We propose a general method by which experiments on ultracold gases can be used to determine the topological properties of the energy bands of optical lattices, as represented by the map of the Berry curvature across the Brillouin zone. The Berry curvature modifies the semiclassical dynamics and hence the trajectory of a wave packet undergoing Bloch oscillations. However, in two dimensions these trajectories may be complicated Lissajous-like figures, making it difficult to extract the effects of Berry curvature in general. We propose how this can be done using a "time-reversal" protocol. This compares the velocity of a wave packet under positive and negative external force, and allows a clean measurement of the Berry curvature over the Brillouin zone. We discuss how this protocol may be implemented and explore the semiclassical dynamics for three specific systems: the asymmetric hexagonal lattice, and two "optical flux" lattices in which the Chern number is nonzero. Finally, we discuss general experimental considerations for observing Berry curvature effects in ultracold gases.Comment: 12 page

    Amplitude-mode dynamics of polariton condensates

    Full text link
    We study the stability of collective amplitude excitations in non-equilibrium polariton condensates. These excitations correspond to renormalized upper polaritons and to the collective amplitude modes of atomic gases and superconductors. They would be present following a quantum quench or could be created directly by resonant excitation. We show that uniform amplitude excitations are unstable to the production of excitations at finite wavevectors, leading to the formation of density-modulated phases. The physical processes causing the instabilities can be understood by analogy to optical parametric oscillators and the atomic Bose supernova.Comment: 4 pages, 2 figure

    Nonlinear instability of density-independent orbital-free kinetic energy functionals

    Full text link
    We study in this article the mathematical properties of a class of orbital-free kinetic energy functionals. We prove that these models are linearly stable but nonlinearly unstable, in the sense that the corresponding kinetic energy functionals are not bounded from below. As a matter of illustration, we provide an example of an electronic density of simple shape the kinetic energy of which is negative.Comment: 14 pages, 1 figur

    Evidence for a quantum phase transition in electron-doped Pr2x_{2-x}Cex_{x}CuO4δ_{4-\delta} from Thermopower measurements

    Full text link
    The evidence for a quantum phase transition under the superconducting dome in the high-TcT_c cuprates has been controversial. We report low temperature normal state thermopower(S) measurements in electron-doped Pr2x_{2-x}Cex_{x}CuO4δ_{4-\delta} as a function of doping (x from 0.11 to 0.19). We find that at 2K both S and S/T increase dramatically from x=0.11 to 0.16 and then saturate in the overdoped region. This behavior has a remarkable similarity to previous Hall effect results in Pr2x_{2-x}Cex_{x}CuO4δ_{4-\delta} . Our results are further evidence for an antiferromagnetic to paramagnetic quantum phase transition in electron-doped cuprates near x=0.16.Comment: 4 pages, 5 figure

    Theoretical Analysis of Electronic and Magnetic Properties of NaV2_2O4_4: Crucial Role of the Orbital Degrees of Freedom

    Full text link
    Using realistic low-energy model with parameters derived from the first-principles electronic structure calculation, we address the origin of the quasi-one-dimensional behavior in orthorhombic NaV2_2O4_4, consisting of the double chains of edge-sharing VO6_6 octahedra. We argue that the geometrical aspect alone does not explain the experimentally observed anisotropy of electronic and magnetic properties of NaV2_2O4_4. Instead, we attribute the unique behavior of NaV2_2O4_4 to one particular type of the orbital ordering, which respects the orthorhombic PnmaPnma symmetry. This orbital ordering acts to divide all t2gt_{2g} states into two types: the `localized' ones, which are antisymmetric with respect to the mirror reflection yy \rightarrow -yy, and the symmetric `delocalized' ones. Thus, NaV2_2O4_4 can be classified as the double exchange system. The directional orientation of symmetric orbitals, which form the metallic band, appears to be sufficient to explain both quasi-one-dimensional character of interatomic magnetic interactions and the anisotropy of electrical resistivity.Comment: 16 pages, 4 figure

    Vibrations and diverging length scales near the unjamming transition

    Full text link
    We numerically study the vibrations of jammed packings of particles interacting with finite-range, repulsive potentials at zero temperature. As the packing fraction ϕ\phi is lowered towards the onset of unjamming at ϕc\phi_{c}, the density of vibrational states approaches a non-zero value in the limit of zero frequency. For ϕ>ϕc\phi>\phi_{c}, there is a crossover frequency, ω\omega^{*} below which the density of states drops towards zero. This crossover frequency obeys power-law scaling with ϕϕc\phi-\phi_{c}. Characteristic length scales, determined from the dominant wavevector contributing to the eigenmode at ω\omega^{*}, diverge as power-laws at the unjamming transition.Comment: Submitted to PRL, 4 pages + 7 .eps figure

    Resistivity scaling and electron relaxation times in metallic nanowires

    Full text link
    We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation (RTA) of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivity scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.Comment: 19 pages, 5 figure

    Can analyses of electronic patient records be independently and externally validated? The effect of statins on the mortality of patients with ischaemic heart disease: a cohort study with nested case-control analysis

    Get PDF
    Objective To conduct a fully independent and external validation of a research study based on one electronic health record database, using a different electronic database sampling the same population. Design Using the Clinical Practice Research Datalink (CPRD), we replicated a published investigation into the effects of statins in patients with ischaemic heart disease (IHD) by a different research team using QResearch. We replicated the original methods and analysed all-cause mortality using: (1) a cohort analysis and (2) a case-control analysis nested within the full cohort. Setting Electronic health record databases containing longitudinal patient consultation data from large numbers of general practices distributed throughout the UK. Participants CPRD data for 34 925 patients with IHD from 224 general practices, compared to previously published results from QResearch for 13 029 patients from 89 general practices. The study period was from January 1996 to December 2003. Results We successfully replicated the methods of the original study very closely. In a cohort analysis, risk of death was lower by 55% for patients on statins, compared with 53% for QResearch (adjusted HR 0.45, 95% CI 0.40 to 0.50; vs 0.47, 95% CI 0.41 to 0.53). In case-control analyses, patients on statins had a 31% lower odds of death, compared with 39% for QResearch (adjusted OR 0.69, 95% CI 0.63 to 0.75; vs OR 0.61, 95% CI 0.52 to 0.72). Results were also close for individual statins. Conclusions Database differences in population characteristics and in data definitions, recording, quality and completeness had a minimal impact on key statistical outputs. The results uphold the validity of research using CPRD and QResearch by providing independent evidence that both datasets produce very similar estimates of treatment effect, leading to the same clinical and policy decisions. Together with other non-independent replication studies, there is a nascent body of evidence for wider validity

    Lattice Green's function for crystals containing a planar interface

    Full text link
    Flexible boundary condition methods couple an isolated defect to a harmonically responding medium through the bulk lattice Green's function; in the case of an interface, interfacial lattice Green's functions. We present a method to compute the lattice Green's function for a planar interface with arbitrary atomic interactions suited for the study of line defect/interface interactions. The interface is coupled to two different semi-infinite bulk regions, and the Green's function for interface-interface, bulk-interface and bulk-bulk interactions are computed individually. The elastic bicrystal Green's function and the bulk lattice Green's function give the interaction between bulk regions. We make use of partial Fourier transforms to treat in-plane periodicity. Direct inversion of the force constant matrix in the partial Fourier space provides the interface terms. The general method makes no assumptions about the atomic interactions or crystal orientations. We simulate a screw dislocation interacting with a (101ˉ2)(10\bar{1}2) twin boundary in Ti using flexible boundary conditions and compare with traditional fixed boundary conditions results. Flexible boundary conditions give the correct core structure with significantly less atoms required to relax by energy minimization. This highlights the applicability of flexible boundary conditions methods to modeling defect/interface interactions by \textit{ab initio} methods
    corecore