4,168 research outputs found

    Amplitude-mode dynamics of polariton condensates

    Full text link
    We study the stability of collective amplitude excitations in non-equilibrium polariton condensates. These excitations correspond to renormalized upper polaritons and to the collective amplitude modes of atomic gases and superconductors. They would be present following a quantum quench or could be created directly by resonant excitation. We show that uniform amplitude excitations are unstable to the production of excitations at finite wavevectors, leading to the formation of density-modulated phases. The physical processes causing the instabilities can be understood by analogy to optical parametric oscillators and the atomic Bose supernova.Comment: 4 pages, 2 figure

    Theoretical Analysis of Electronic and Magnetic Properties of NaV2_2O4_4: Crucial Role of the Orbital Degrees of Freedom

    Full text link
    Using realistic low-energy model with parameters derived from the first-principles electronic structure calculation, we address the origin of the quasi-one-dimensional behavior in orthorhombic NaV2_2O4_4, consisting of the double chains of edge-sharing VO6_6 octahedra. We argue that the geometrical aspect alone does not explain the experimentally observed anisotropy of electronic and magnetic properties of NaV2_2O4_4. Instead, we attribute the unique behavior of NaV2_2O4_4 to one particular type of the orbital ordering, which respects the orthorhombic PnmaPnma symmetry. This orbital ordering acts to divide all t2gt_{2g} states into two types: the `localized' ones, which are antisymmetric with respect to the mirror reflection yy \rightarrow -yy, and the symmetric `delocalized' ones. Thus, NaV2_2O4_4 can be classified as the double exchange system. The directional orientation of symmetric orbitals, which form the metallic band, appears to be sufficient to explain both quasi-one-dimensional character of interatomic magnetic interactions and the anisotropy of electrical resistivity.Comment: 16 pages, 4 figure

    Vibrations and diverging length scales near the unjamming transition

    Full text link
    We numerically study the vibrations of jammed packings of particles interacting with finite-range, repulsive potentials at zero temperature. As the packing fraction ϕ\phi is lowered towards the onset of unjamming at ϕc\phi_{c}, the density of vibrational states approaches a non-zero value in the limit of zero frequency. For ϕ>ϕc\phi>\phi_{c}, there is a crossover frequency, ω\omega^{*} below which the density of states drops towards zero. This crossover frequency obeys power-law scaling with ϕϕc\phi-\phi_{c}. Characteristic length scales, determined from the dominant wavevector contributing to the eigenmode at ω\omega^{*}, diverge as power-laws at the unjamming transition.Comment: Submitted to PRL, 4 pages + 7 .eps figure

    Resistivity scaling and electron relaxation times in metallic nanowires

    Full text link
    We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation (RTA) of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivity scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.Comment: 19 pages, 5 figure

    Can analyses of electronic patient records be independently and externally validated? The effect of statins on the mortality of patients with ischaemic heart disease: a cohort study with nested case-control analysis

    Get PDF
    Objective To conduct a fully independent and external validation of a research study based on one electronic health record database, using a different electronic database sampling the same population. Design Using the Clinical Practice Research Datalink (CPRD), we replicated a published investigation into the effects of statins in patients with ischaemic heart disease (IHD) by a different research team using QResearch. We replicated the original methods and analysed all-cause mortality using: (1) a cohort analysis and (2) a case-control analysis nested within the full cohort. Setting Electronic health record databases containing longitudinal patient consultation data from large numbers of general practices distributed throughout the UK. Participants CPRD data for 34 925 patients with IHD from 224 general practices, compared to previously published results from QResearch for 13 029 patients from 89 general practices. The study period was from January 1996 to December 2003. Results We successfully replicated the methods of the original study very closely. In a cohort analysis, risk of death was lower by 55% for patients on statins, compared with 53% for QResearch (adjusted HR 0.45, 95% CI 0.40 to 0.50; vs 0.47, 95% CI 0.41 to 0.53). In case-control analyses, patients on statins had a 31% lower odds of death, compared with 39% for QResearch (adjusted OR 0.69, 95% CI 0.63 to 0.75; vs OR 0.61, 95% CI 0.52 to 0.72). Results were also close for individual statins. Conclusions Database differences in population characteristics and in data definitions, recording, quality and completeness had a minimal impact on key statistical outputs. The results uphold the validity of research using CPRD and QResearch by providing independent evidence that both datasets produce very similar estimates of treatment effect, leading to the same clinical and policy decisions. Together with other non-independent replication studies, there is a nascent body of evidence for wider validity

    Lattice Green's function for crystals containing a planar interface

    Full text link
    Flexible boundary condition methods couple an isolated defect to a harmonically responding medium through the bulk lattice Green's function; in the case of an interface, interfacial lattice Green's functions. We present a method to compute the lattice Green's function for a planar interface with arbitrary atomic interactions suited for the study of line defect/interface interactions. The interface is coupled to two different semi-infinite bulk regions, and the Green's function for interface-interface, bulk-interface and bulk-bulk interactions are computed individually. The elastic bicrystal Green's function and the bulk lattice Green's function give the interaction between bulk regions. We make use of partial Fourier transforms to treat in-plane periodicity. Direct inversion of the force constant matrix in the partial Fourier space provides the interface terms. The general method makes no assumptions about the atomic interactions or crystal orientations. We simulate a screw dislocation interacting with a (101ˉ2)(10\bar{1}2) twin boundary in Ti using flexible boundary conditions and compare with traditional fixed boundary conditions results. Flexible boundary conditions give the correct core structure with significantly less atoms required to relax by energy minimization. This highlights the applicability of flexible boundary conditions methods to modeling defect/interface interactions by \textit{ab initio} methods

    Screening model for nanowire surface-charge sensors in liquid

    Get PDF
    The conductance change of nanowire field-effect transistors is considered a highly sensitive probe for surface charge. However, Debye screening of relevant physiological liquid environments challenge device performance due to competing screening from the ionic liquid and nanowire charge carriers. We discuss this effect within Thomas-Fermi and Debye-Huckel theory and derive analytical results for cylindrical wires which can be used to estimate the sensitivity of nanowire surface-charge sensors. We study the interplay between the nanowire radius, the Thomas-Fermi and Debye screening lengths, and the length of the functionalization molecules. The analytical results are compared to finite-element calculations on a realistic geometry.Comment: 4 pages including 2 figures. Accepted for AP

    Quantum Manifestation of Elastic Constants in Nanostructures

    Full text link
    Generally, there are two distinct effects in modifying the properties of low-dimensional nanostructures: surface effect (SS) due to increased surface-volume ratio and quantum size effect (QSE) due to quantum confinement in reduced dimension. The SS has been widely shown to affect the elastic constants and mechanical properties of nanostructures. Here, using Pb nanofilm and graphene nanoribbon as model systems, we demonstrate the QSE on the elastic constants of nanostructures by first-principles calculations. We show that generally QSE is dominant in affecting the elastic constants of metallic nanostructures while SS is more pronounced in semiconductor and insulator nanostructures. Our findings have broad implications in quantum aspects of nanomechanics
    corecore