135 research outputs found

    A Randomized Trial of Intravenous Iron Supplementation and Exercise on Exercise Capacity in Iron-Deficient Nonanemic Patients With CKD

    Get PDF
    Introduction: Patients with chronic kidney disease (CKD) are often iron deficient, even when not anemic. This trial evaluated whether iron supplementation enhances exercise capacity of nonanemic patients with CKD who have iron-deficiency. Methods: Prospective, multicenter double-blind randomized controlled trial of nondialysis patients with CKD and iron-deficiency but without anemia (Hemoglobin [Hb] >110 g/l). Patients were assigned 1:1 to intravenous (IV) iron therapy, or placebo. An 8-week exercise program commenced at week 4. The primary outcome was the mean between-group difference in 6-minute walk test (6MWT) at 4 weeks. Secondary outcomes included 6MWT at 12 weeks, transferrin saturation (TSAT), serum ferritin (SF), Hb, renal function, muscle strength, functional capacity, quality of life, and adverse events at baseline, 4 weeks, and at 12 weeks. Mean between-group differences were analyzed using analysis of covariance models. Results: Among 75 randomized patients, mean (SD) age for iron therapy (n = 37) versus placebo (n = 38) was 54 (16) versus 61 (12) years; estimated glomerular filtration rate (eGFR) (34 [12] vs. 35 [11] ml/min per 1.73 m2], TSAT (23 [12] vs. 21 [6])%; SF (57 [64] vs. 62 [33]) Îźg/l; Hb (122.4 [9.2] vs. 127 [13.2] g/l); 6MWT (384 [95] vs. 469 [142] meters) at baseline, respectively. No significant mean between-group difference was observed in 6MWT distance at 4 weeks. There were significant increases in SF and TSAT at 4 and 12 weeks (P < 0.02), and Hb at 12 weeks (P = 0.009). There were no between-group differences in other secondary outcomes and no adverse events attributable to iron therapy. Conclusion: This trial did not demonstrate beneficial effects of IV iron therapy on exercise capacity at 4 weeks. A larger study is needed to confirm if IV iron is beneficial in nondialysis patients with CKD who are iron-deficient

    Interpretable machine learning models for classifying low back pain status using functional physiological variables.

    Get PDF
    PURPOSE:To evaluate the predictive performance of statistical models which distinguishes different low back pain (LBP) sub-types and healthy controls, using as input predictors the time-varying signals of electromyographic and kinematic variables, collected during low-load lifting. METHODS:Motion capture with electromyography (EMG) assessment was performed on 49 participants [healthy control (con) = 16, remission LBP (rmLBP) = 16, current LBP (LBP) = 17], whilst performing a low-load lifting task, to extract a total of 40 predictors (kinematic and electromyographic variables). Three statistical models were developed using functional data boosting (FDboost), for binary classification of LBP statuses (model 1: con vs. LBP; model 2: con vs. rmLBP; model 3: rmLBP vs. LBP). After removing collinear predictors (i.e. a correlation of > 0.7 with other predictors) and inclusion of the covariate sex, 31 predictors were included for fitting model 1, 31 predictors for model 2, and 32 predictors for model 3. RESULTS:Seven EMG predictors were selected in model 1 (area under the receiver operator curve [AUC] of 90.4%), nine predictors in model 2 (AUC of 91.2%), and seven predictors in model 3 (AUC of 96.7%). The most influential predictor was the biceps femoris muscle (peak [Formula: see text]  = 0.047) in model 1, the deltoid muscle (peak [Formula: see text] =  0.052) in model 2, and the iliocostalis muscle (peak [Formula: see text] =  0.16) in model 3. CONCLUSION:The ability to transform time-varying physiological differences into clinical differences could be used in future prospective prognostic research to identify the dominant movement impairments that drive the increased risk. These slides can be retrieved under Electronic Supplementary Material

    The Origin of Intraspecific Variation of Virulence in an Eukaryotic Immune Suppressive Parasite

    Get PDF
    Occurrence of intraspecific variation in parasite virulence, a prerequisite for coevolution of hosts and parasites, has largely been reported. However, surprisingly little is known of the molecular bases of this variation in eukaryotic parasites, with the exception of the antigenic variation used by immune-evading parasites of mammals. The present work aims to address this question in immune suppressive eukaryotic parasites. In Leptopilina boulardi, a parasitic wasp of Drosophila melanogaster, well-defined virulent and avirulent strains have been characterized. The success of virulent females is due to a major immune suppressive factor, LbGAP, a RacGAP protein present in the venom and injected into the host at oviposition. Here, we show that an homologous protein, named LbGAPy, is present in the venom of the avirulent strain. We then question whether the difference in virulence between strains originates from qualitative or quantitative differences in LbGAP and LbGAPy proteins. Results show that the recombinant LbGAPy protein has an in vitro GAP activity equivalent to that of recombinant LbGAP and similarly targets Drosophila Rac1 and Rac2 GTPases. In contrast, a much higher level of both mRNA and protein is found in venom-producing tissues of virulent parasitoids. The F1 offspring between virulent and avirulent strains show an intermediate level of LbGAP in their venom but a full success of parasitism. Interestingly, they express almost exclusively the virulent LbGAP allele in venom-producing tissues. Altogether, our results demonstrate that the major virulence factor in the wasp L. boulardi differs only quantitatively between virulent and avirulent strains, and suggest the existence of a threshold effect of this molecule on parasitoid virulence. We propose that regulation of gene expression might be a major mechanism at the origin of intraspecific variation of virulence in immune suppressive eukaryotic parasites. Understanding this variation would improve our knowledge of the mechanisms of transcriptional evolution currently under active investigation

    Evaluating the effect of a digital health intervention to enhance physical activity in people with chronic kidney disease (Kidney BEAM): a multicentre, randomised controlled trial in the UK

    Get PDF
    Data sharing: Data collected during the study, including de-identified participant data, will be made available on reasonable request, and following trial steering committee approval, by contacting the corresponding author. The study protocol, statistical analysis plan, and other study forms were published previously [24. Walklin, C.G. et al. (2023) 'The effect of a novel, digital physical activity and emotional well-being intervention on health-related quality of life in people with chronic kidney disease: trial design and baseline data from a multicentre prospective, wait-list randomised controlled trial (Kidney BEAM)', BMC Nephrology, 24, p. 122. doi: .10.1186/s12882-023-03173-7]Copyright . Background: Remote digital health interventions to enhance physical activity provide a potential solution to improve the sedentary behaviour, physical inactivity, and poor health-related quality of life that are typical of chronic conditions, particularly for people with chronic kidney disease. However, there is a need for high-quality evidence to support implementation in clinical practice. The Kidney BEAM trial evaluated the clinical effect of a 12-week physical activity digital health intervention on health-related quality of life. Methods: In a single-blind, randomised controlled trial conducted at 11 centres in the UK, adult participants (aged ≥18 years) with chronic kidney disease were recruited and randomly assigned (1:1) to the Kidney BEAM physical activity digital health intervention or a waiting list control group. Randomisation was performed with a web-based system, in randomly permuted blocks of six. Outcome assessors were masked to treatment allocation. The primary outcome was the difference in the Kidney Disease Quality of Life Short Form version 1.3 Mental Component Summary (KDQoL-SF1.3 MCS) between baseline and 12 weeks. The trial was powered to detect a clinically meaningful difference of 3 arbitrary units (AU) in KDQoL-SF1.3 MCS. Outcomes were analysed by an intention-to-treat approach using an analysis of covariance model, with baseline measures and age as covariates. The trial was registered with ClinicalTrials.gov, NCT04872933. Findings: Between May 6, 2021, and Oct 30, 2022, 1102 individuals were assessed for eligibility, of whom 340 participants were enrolled and randomly assigned to the Kidney BEAM intervention group (n=173) or the waiting list control group (n=167). 268 participants completed the trial (112 in the Kidney BEAM group and 156 in the waiting list control group). All 340 randomly assigned participants were included in the intention-to treat population. At 12 weeks, there was a significant improvement in KDQoL-SF.13 MCS score in the Kidney BEAM group (from mean 44·6 AU [SD 10·8] at baseline to 47·0 AU [10·6] at 12 weeks) compared with the waiting list control group (from 46·1 AU [10·5] to 45·0 AU [10·1]; between-group difference of 3·1 AU [95% CI 1·8–4·4]; p<0·0001). Interpretation: The Kidney BEAM physical activity platform is an efficacious digital health intervention to improve mental health-related quality of life in patients with chronic kidney disease. These findings could facilitate the incorporation of remote digital health interventions into clinical practice and offer a potential intervention worthy of investigation in other chronic conditions.Kidney Research UK

    The restorative role of annexin A1 at the blood–brain barrier

    Get PDF
    Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging
    • …
    corecore