587 research outputs found

    Buoyancy-driven motion of a deformable drop toward a planar wall at low Reynolds number

    Get PDF
    The slow viscous motion of a deformable drop moving normal to a planar wall is studied numerically. In particular, a boundary integral technique employing the Green's function appropriate to a no-slip planar wall is used. Beginning with spherical drop shapes far from the wall, highly deformed and ‘dimpled’ drop configurations are obtained as the planar wall is approached. The initial stages of dimpling and their evolution provide information and insight into the basic assumptions of film-drainage theory

    Pulmonary tuberculosis followed by sarcoidosis in an HIV-infected patient: a case report and a simplified diagnostic flowchart for diagnosis and treatment of sarcoidosis

    Get PDF
    The diagnosis of sarcoidosis in a patient living with HIV infection is an uncommon event and a challenge for clinicians. Clinical manifestations are variable and fluctuating depending to adherence to ARV therapy and to the level of CD4 count. We analyze here one chronic case in which sarcoidosis appeared clinically two years after pulmonary tuberculosis. The course of the disease was influenced and prolonged by frequent interruptions of antiretroviral therapy. Moreover the diagnosis and the decision to treat have been delayed by the need of exclusion of other pathologies, principally tuberculosis reactivation/reinfection, other mycobacterial diseases, hematologic malignancies. We propose a simplified flowchart for diagnosis and follow up of sarcoidosis, which may also be applied to patients with HIV infection. Diagnosis of latent tuberculosis infection (LTBI) may be difficult in these patients, because the immunological paradox of sarcoidosis. For this reason, following exclusion of active tuberculosis, we advise to submit all sarcoidosis patients to IPT (isoniazid preventive therapy), when immunosuppressive therapy is started

    Upper Limit on the Magnetic Dipole Contribution to the 5p-8p Transition in Rb by Use of Ultracold Atom Spectroscopy

    Full text link
    We report on hyperfine-resolved spectroscopic measurements of the electric-dipole forbidden 5p3/2→8p1/2p_{3/2} \to 8p_{1/2} transition in a sample of ultracold 87^{87}Rb atoms. The hyperfine selection rules enable the weak magnetic-dipole (M1) contribution to the transition strength to be distinguished from the much stronger electric-quadrupole (E2) contribution. An upper limit on the M1 transition strength is determined that is about 50 times smaller than an earlier experimental determination. We also calculate the expected value of the M1 matrix element and find that it is less than the upper limit extracted from the experiment.Comment: 7 pages, 4 figures, 3 table

    Criteria for evaluation of grid generation systems

    Get PDF
    Many CFD grid generation systems are in use nationally, but few comparative studies have been performed to quantify their relative merits. A study was undertaken to systematically evaluate and select the best CFD grid generation codes available. Detailed evaluation criteria were established as the basis for the evaluation conducted. Descriptions of thirty-four separate criteria, grouped into eight general categories are provided. Benchmark test cases, developed to test basic features of selected codes, are described in detail. Scoring guidelines were generated to establish standards for measuring code capabilities, ensuring uniformity of ratings, and minimizing personal bias among the three code evaluators. Ten candidate codes were identified from government, industry, universities, and commercial software companies. A three phase evaluation was conducted. In Phase 1, ten codes identified were screened through conversations with code authors and other industry experts. Seven codes were carried forward into a Phase 2 evaluation in which all codes were scored according to the predefined criteria. Two codes emerged as being significantly better than the others: RAGGS and GRIDGEN. Finally, these two codes were carried forward into a Phase 3 evaluation in which complex 3-D multizone grids were generated to verify capability

    The 40s Omega-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c

    Get PDF
    The structural and redox properties of a non-covalent complex reconstituted upon mixing two non-contiguous fragments of horse cytochrome c, the residues 1 - 38 heme-containing N-fragment with the residues 57 - 104 C-fragment, have been investigated. With respect to native cyt c, the complex lacks a segment of 18 residues, corresponding, in the native protein, to an omega ( W)loop region. The fragment complex shows compact structure, native-like alpha-helix content but a less rigid atomic packing and reduced stability with respect to the native protein. Structural heterogeneity is observed at pH 7.0, involving formation of an axially misligated low-spin species and consequent partial displacement of Met80 from the sixth coordination position of the heme-iron. Spectroscopic data suggest that a lysine ( located in the Met80-containing loop, namely Lys72, Lys73, or Lys79) replaces the methionine residue. The residues 1 - 38/57 - 104 fragment complex shows an unusual biphasic alkaline titration characterized by a low (pK(a1)= 6.72) and a high pK(a)-associated state transition (pK(a2)= 8.56); this behavior differs from that of native cyt c, which shows a monophasic alkaline transition ( pK(a)= 8.9). The data indicate that the 40s Omega-loop plays an important role in the stability of cyt c and in ensuring a correct alkaline conformational transition of the protein

    A Comparative Computer Simulation of Dendritic Morphology

    Get PDF
    Computational modeling of neuronal morphology is a powerful tool for understanding developmental processes and structure-function relationships. We present a multifaceted approach based on stochastic sampling of morphological measures from digital reconstructions of real cells. We examined how dendritic elongation, branching, and taper are controlled by three morphometric determinants: Branch Order, Radius, and Path Distance from the soma. Virtual dendrites were simulated starting from 3,715 neuronal trees reconstructed in 16 different laboratories, including morphological classes as diverse as spinal motoneurons and dentate granule cells. Several emergent morphometrics were used to compare real and virtual trees. Relating model parameters to Branch Order best constrained the number of terminations for most morphological classes, except pyramidal cell apical trees, which were better described by a dependence on Path Distance. In contrast, bifurcation asymmetry was best constrained by Radius for apical, but Path Distance for basal trees. All determinants showed similar performance in capturing total surface area, while surface area asymmetry was best determined by Path Distance. Grouping by other characteristics, such as size, asymmetry, arborizations, or animal species, showed smaller differences than observed between apical and basal, pointing to the biological importance of this separation. Hybrid models using combinations of the determinants confirmed these trends and allowed a detailed characterization of morphological relations. The differential findings between morphological groups suggest different underlying developmental mechanisms. By comparing the effects of several morphometric determinants on the simulation of different neuronal classes, this approach sheds light on possible growth mechanism variations responsible for the observed neuronal diversity
    • …
    corecore