17 research outputs found
Corrosion behavior of CrN coated on steel substrates by EIS
Se ha estudiado el comportamiento frente a la corrosión de recubrimientos de CrN, obtenidos por pulverización catódica con magnetrón desbalanceado (PCMD) sobre sustratos metálicos AISI 304 y ASTM A36, mediante la técnica de espectroscopía de impedancia electroquímica (EIE) en electrólito de NaCl al 3% en peso. Con el objetivo de determinar los mecanismos de falla se ha correlacionado la resistencia a la polarización (Rp), con la morfología y la composición química de los recubrimientos producidos. Para ello, la microestructura de los recubrimientos se ha caracterizado mediante microscopía electrónica de barrido (MEB), las fases cristalinas con difracción de rayos X (DRX) y la composición química, antes y después de ser expuestos al medio corrosivo, con espectroscopía de fotoelectrones de rayos X (EFRX) y de electrones Auger (EEA). En general, la resistencia a la corrosión del recubrimiento de CrN es totalmente dependiente del sustrato sobre el cual se encuentra, obteniendo la mejor resistencia a la corrosión el recubrimiento depositado sobre acero inoxidable, lo cual se corroboró con el aumento de la resistencia a la polarización con el tiempo de ensayo. Estos detalles son discutidos en esta investigación.We have studied the corrosion behavior of CrN coatings, obtained by unbalanced magnetron sputtering (UBM) on substrates of AISI 304 and ASTM A36, using the electrochemical impedance spectroscopy technique (EIS) in electrolyte of NaCl 3% wt. In order to determine the mechanisms of protection and failure of these systems, we correlated the polarization resistance (Rp) in time function, with the morphology and chemical composition. To do this, we characterized the microstructure of the coatings by scanning electron microscopy (SEM), the crystalline phases with X-ray diffraction (XRD) and chemical composition, before and after exposure to a corrosive environment, by X-ray photoelectron spectroscopy (XPS) and Auger electrons (AES). In general, the corrosion resistance of CrN coatings is totally influenced by the substrate. The best corrosion resistance was achieved in the film deposited on stainless steel, than was observed with the increased in the polarization resistance. These details are discussed in this research.Fil: Torres Luque, Magda Marcela. Universidad de los Andes; ColombiaFil: Ascolani, Hugo del Lujan. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Olaya Florez, Jhon Jairo. Universidad Nacional de Colombia; Colombi
2D Cu-TCNQ Metal-Organic Networks Induced by Surface Alloying
We have studied the self-assembly of 7,7,8,8-tetracyanoquinodimethane molecules on the (3√2 × √2)R45° reconstruction of the SnCu(001) surface alloy by means of X-ray photoemission spectroscopy, scanning tunneling microscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory calculations. Our results show that surface alloying strongly attenuates the chemical interaction of the molecule with the surface, but it does not inhibit the charge transfer from the substrate to the molecules. The assembly mechanism of the molecules is completely modified with respect to the bare Cu(001) surface. We show that, on the SnCu(100) surface alloy, the strong CN-Cu interaction drives the formation of different coordination structures with native Cu adatoms. We found that the flexible coordination chemistry of Cu allows the formation of three different stable phases, each one with the Cu ions in a different coordination geometry (coordinations 4, 3, and 2). Moreover, we show that both the formation of lateral H bonds between adjacent molecules and the interaction of the Cu ion with the substrate play determinant roles in the stabilization of the structures.Fil: Fuhr, Javier Daniel. Universidad Nacional de Cuyo; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Robino, L.I.. Universidad Nacional de Cuyo; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Rodríguez, L.M.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Verdini, A.. No especifíca;Fil: Floreano, L.. No especifíca;Fil: Ascolani, Hugo del Lujan. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Gayone, Julio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentin
Van der Waals interactions in the self-assembly of 5-amino[6]helicene on Cu(100) and Au(111)
A combination of Scanning Tunnelling Microscopy and Density Functional
Theory simulations highlights the role of van der Waals interactions in
the self-assembly of an aminohelicene on Cu(100) and Au(111).Fil: Ascolani, Hugo del Lujan. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Bariloche); ArgentinaFil: Van Der Meijden, Maarten W.. Syncom BV; Países BajosFil: Cristina, Lucila Josefina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Bariloche); ArgentinaFil: Gayone, Julio Esteban. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Bariloche); ArgentinaFil: Kellogg, Richard M.. Syncom BV; Países BajosFil: Fuhr, Javier Daniel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Bariloche); ArgentinaFil: Lingenfelder, Magalí. Max Planck-EPFL Laboratory for Molecular Nanoscience; Suiz
Controlling Carboxyl Deprotonation on Cu(001) by Surface Sn Alloying
We find that for adsorbed terephthalic acid (TPA) molecules surface Sn alloying deactivates the Cu(001) surface by decoupling the adsorbed molecules from the substrate. This effect is investigated for the case of the 0.5 ML phase of the Sn/Cu(001) surface alloy by applying fast X-ray photoemission spectroscopy, scanning tunneling microscopy, near-edge Xray absorption fine structure spectroscopy, and density functional theory calculations. The experimental results conclusively show that the deprotonation reaction of the carboxyl groups occurring in the clean Cu(001) is fully inhibited on this Sn/Cu(001) surface alloy, which allows the molecules to form two-dimensional arrays stabilized by [OH···O] hydrogen bonds. The formed arrays exhibit a crystal structure that is practically indistinguishable from that theoretically obtained for unsupported TPA sheets, suggesting an extremely weak molecule/substrate interaction. This is supported by DFT calculations of the adsorption energy landscape of the TPA sheets formed on the Sn/Cu(001) template: the lateral variation of the adsorption energy (corrugation) is estimated to be less than 0.2 eV, with an adsorption energy per molecule in the range 1.6−1.8 eV and a contribution of each double [OH···O] bond of 1 eV. Finally, the performed thermal desorption experiments show that the TPA sheets remain stable on the surface alloy until their desorption. From these experiments, a value of 1.5 eV was determined for the desorption energy barrier, which is consistent with the important contribution of the [OH···O] bonds to the stability of the sheets as theoretically predicted. The results reported in this study suggest that a gradual activation of the interaction between the TPA molecules and the Cu(001) surface will also be obtained for decreasing Sn coverage.Fil: Carrera, Alvaro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Cristina, Lucila Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Bengió, Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Cossaro, A. . Italian National Research Council. Istituto Officina dei Materiali; ItaliaFil: Verdini, A. . Italian National Research Council. Istituto Officina dei Materiali; ItaliaFil: Floreano, L.. Italian National Research Council. Istituto Officina dei Materiali; ItaliaFil: Fuhr, Javier Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Gayone, Julio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Ascolani, Hugo del Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentin
Interplay between Hydrogen Bonding and Molecule-Substrate Interactions in the Case of Terephthalic Acid Molecules on Cu(001) Surfaces
The adsorption and self-assembling properties of terephthalic acid (TPA) molecules deposited on Cu(001) at room temperature have been systematically studied using both experimental and theoretical tools. The system forms two phases at room temperature, the metastable β-phase and the stable 3×3 one. In the case of the β phase, the low-energy electron diffraction and scanning-tunneling microscopy (STM) results indicate that the β phase has a (9 √ 2×2 √ 2)R45◦ unit cell with exactly the same molecular coverage as the 3×3 phase. In addition, the high-resolution X-ray photoelectron spectroscopy O1s spectra indicate that the irreversible β → 3 × 3 transition involves the following two processes: i) deprotonation of the complete carboxyl groups remaining in the metastable phase and ii) re-arrangement of the molecules into the 3×3 configuration. On the other hand, we explored possible molecular configurations for the β phase with different degree of deprotonation (including structures with Cu adatoms) by means of density functional theory calculations. Our theoretical results indicate the formation of strong bonds between the O atoms in carboxylates and the Cu atoms of the surface, which causes a bending of the molecules and a buckling of the first Cu layer. In the 3 × 3 phases, we show that the bending produces observable effects in the molecular STM images. We also observed that the strong interaction between the carboxylates and the Cu atoms at the step edges drives the reorientation of the surface steps along the crystallographic directions.Fil: Fuhr, Javier Daniel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carrera, Alvaro Daniel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Murillo Quiros, Natalia Maria. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cristina, Lucila Josefina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cossaro, Albano. Consiglio Nazionale delle Ricerche. Istituto Officina dei Materiali; ItaliaFil: Verdini, Alberto. Consiglio Nazionale delle Ricerche. Istituto Officina dei Materiali; ItaliaFil: Floreano, Luca. Consiglio Nazionale delle Ricerche. Istituto Officina dei Materiali; ItaliaFil: Gayone, Julio Esteban. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ascolani, Hugo del Lujan. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Ubiquitous deprotonation of terephthalic acid in the self-assembled phases on Cu(100)
We performed an exhaustive study of terephthalic acid (TPA) self-assembly on a Cu(100) surface, where first-layer molecules display two sequential phase transitions in the 200-400 K temperature range, corresponding to different stages of molecular deprotonation. We followed the chemical and structural changes by means of high-resolution X-ray photoelectron spectroscopy (XPS) and variable-temperature scanning tunneling microscopy (STM), which were interpreted on the basis of density functional theory (DFT) calculations and photoemission simulations. In order to reveal the spectroscopic contributions of the molecules in different states of deprotonation, we modified the substrate reactivity by deposition of a small amount of Sn, which hampers the deprotonation reaction. We found that the characteristic molecular ribbons of the TPA/Cu(100) α-phase at a low temperature contain a significant fraction of partially deprotonated molecules, in contrast to the expectation of a fully protonated phase, where the self-assembly was claimed to be simply driven by the intermolecular double hydrogen bonds [OH⋯O]. On the basis of our simulations, we propose a model where the carboxylate groups of the partially deprotonated molecules form single hydrogen bonds with the carboxylic groups of the fully protonated molecules. Using real time XPS, we also monitored the kinetics of the deprotonation reaction. We show that the network of mixed single and double hydrogen bonds inhibits further deprotonation up to ∼270 K, whereas the isolated molecules display a much lower deprotonation barrier.Fil: Quiroga Argañaraz, Maria Bernarda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Cristina, Lucila Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Parra Rodríguez, Laura María. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Cossaro, A.. Consiglio Nazionale delle Ricerche; ItaliaFil: Verdini, A.. Consiglio Nazionale delle Ricerche; ItaliaFil: Floreano, L.. Consiglio Nazionale delle Ricerche; ItaliaFil: Fuhr, Javier Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Gayone, Julio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Ascolani, Hugo del Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin
Single-layer of Bi1−x)Sb(x) grown on Ag(111)
In this work, we report the growth of a single mixed Bi1−xSbx layer, with diverse stoichiometries, on a Ag(111) substrate. The atomic geometry has been thoroughly investigated by low energy electron diffraction, scanning tunneling microscopy, and X-ray photoelectron spectroscopy experiments, as well as calculations based on density functional theory (DFT). We first determined that both pure systems (Bi/Ag(111) and Sb/Ag(111)) show similar behaviors: they form surface alloys with (3–√×3–√)R30∘ periodicity for coverages lower than 1/3 ML, and undergo a dealloying transition for higher coverages up to 2/3 ML. We then established a simple preparation procedure to obtain a mixed Bi-Sb overlayer on Ag(111): it is essential to start with a surface completely covered by either of the two pure surface alloys and then deposit the other element on it. The energetics derived from DFT calculations provide insight into the systems preference towards the formation of this phase, and also predict a pathway to the formation of Bi-rich non-alloyed phases. The obtained mixed Bi-Sb phase has a lateral atomic arrangement very similar to the one in the non-alloyed phase observed for Sb on Ag(111), with Sb and Bi atoms distributed disorderly, and presents a significant vertical corrugation, promising considerable Rashba effects.Fil: Fuhr, Javier Daniel. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Bajas Temperaturas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gayone, Julio Esteban. Comisión Nacional de Energía Atómica. Gerencia del Area Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Balseiro). División Colisiones Atómicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ascolani, Hugo del Lujan. Comisión Nacional de Energía Atómica. Gerencia del Area Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Balseiro). División Colisiones Atómicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Growth of Open Honeycomb-like Sn Structures on Ag(111) at Low Temperatures
We studied, with a combination of low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations, the growth of Sn deposited on the Ag(111) surface kept at low temperatures (<170 K). The LEED experiments show the formation of two phases, a (4 × 4) phase for coverage between 0.17 ML and 0.65 ML and a (7×7)R19° phase that appears at a coverage of ∼0.75 ML. High-resolution STM images for a coverage of 0.37 ML, corresponding to the first phase, show nearly planar islands presenting a local order with a (4 × 4) periodicity. The formed Sn overlayer presents close (triangles) and open honeycomb-like (pentagons and deformed hexagons) structures. DFT calculations show that Sn adatoms should have a high mobility even at low temperatures and that a characteristic of the Sn layer is the coexistence of Sn atoms with three and four neighbors.Fil: Fuhr, Javier Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Gayone, Julio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Ascolani, Hugo del Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentin
Non-alloy/alloy transitions in the Sn/Cu(001) system: An STM, LEED and DFT study
We show that surface alloying during growth of Sn on Cu(001) is inhibited at temperatures below 170 K. We have studied the non-alloying surface structures that are formed starting from low Sn coverage up to 0.65 ML, finding two novel non-alloying surface reconstructions. They were investigated by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) experiments, and by density functional theory (DFT) calculations. Increasing the temperature, we found that the exchange process is activated at 200–240 K causing the transformation of the initial non-alloyed surface into the corresponding alloyed one. The five known reconstructions of the Sn/Cu(100) surface alloy in the studied Sn coverage range are recovered when starting from the low temperature non-alloying phases. We analyze the atomistic processes involved in the non-alloy/alloy transitions, using first-principles calculations of the energy landscape of the Sn/Cu(001) system.Fil: Machain, Paloma. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Gayone, Julio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Fuhr, Javier Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Ascolani, Hugo del Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentin
Adlayers of Alkanedithiols on Au(111): effect of disulfide reducing agent
High-resolution photoemission spectroscopy is used to characterize adlayers of ethane-, hexane-, and nonanedithiol molecules grown on Au(111) surfaces by the immersion method. The effect of using a reducing agent during and after the immersion to inhibit or eliminate S–S bonds is investigated. Our results demonstrate that immersion 24 h in millimolar dithiol ethanolic solutions gives rise to the formation of multilayers; this effect is more pronounced in the case of ethanedithiol, the shortest molecule. A post-treatment with a disulfide reducing agent is effective to produce monolayers of standing-up molecules; this effect is again more pronounced in the case of ethanedithiol. Finally, the immersion 24 h in a solution containing dithiol and the reducing agent gives an unexpected result: most molecules remain adsorbed in the lying-down configuration; in this case, the almost complete suppression of the standing-up phase occurs equally with the three types of molecules, which suggests that the formation of S–S bonds must be important for the lifting of the molecules.Fil: Cometto, Fernando Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Ruano Sandoval, Gustavo Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ascolani, Hugo del Lujan. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zampieri, Guillermo Enrique. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin