52 research outputs found

    Low-mass GEM detector with radial zigzag readout strips for forward tracking at the EIC

    Full text link
    We present design and construction of a large low-mass Triple-GEM detector prototype for forward tracking at a future Electron-Ion Collider. In this environment, multiple scattering of forward and backward tracks must be minimized so that electron tracks can be cleanly matched to calorimeter clusters and so that hadron tracks can efficiently seed RICH ring reconstruction for particle identification. Consequently, the material budget for the forward tracking detectors is critical. The construction of the detector builds on the mechanical foil stretching and assembly technique pioneered by CMS for the muon endcap GEM upgrade. As an innovation, this detector implements drift and readout electrodes on thin large foils instead of on PCBs. These foils get stretched mechanically together with three GEM foils in a single stack. This reduces the radiation length of the total detector material in the active area by a factor seven from over 4% to below 0.6%. It also aims at improving the uniformity of drift and induction gap sizes across the detector and consequently signal response uniformity. Thin outer frames custom-made from carbon-fiber composite material take up the tension from the stretched foil stack and provide detector rigidity while keeping the detector mass low. The gas volume is closed with thin aluminized polyimide foils. The trapezoidal detector covers an azimuthal angle of 30.1 degrees and a radius from 8 cm to 90 cm. It is read out with radial zigzag strips with pitches of 1.37 mrad at the outer radius and 4.14 mrad at the inner radius that reduce the number of required electronics channels and associated cost while maintaining good spatial resolution. All front-end readout electronics is located away from the active area at the outer radius of the trapezoid.Comment: 4 pages, 7 figures, submitted to conference record of 2017 IEEE Nuclear Science Symposium, Atlanta, G

    Global Analysis of Helicity Parton Densities and Their Uncertainties

    Full text link
    We present a new analysis of the helicity parton distributions of the nucleon. The analysis takes into account the available data from inclusive and semi-inclusive polarized deep inelastic scattering, as well as from polarized pp scattering at RHIC. For the first time, all theoretical calculations are performed fully at next-to-leading order (NLO) of perturbative QCD, using a method that allows to incorporate the NLO corrections in a very fast and efficient way in the analysis. We find evidence for a rather small gluon polarization in the nucleon, over a limited region of momentum fraction, and for interesting flavor patterns in the polarized sea.Comment: 4 pages, 3 figure

    Beiträge zur Geschichte des Landkreises Regensburg 42

    Get PDF
    Die Zeit danach - Erinnerungen an die Jahre 1945/46 in und um Regensbur

    Opportunities for Drell-Yan Physics at RHIC

    No full text
    Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participants of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future
    corecore