48 research outputs found

    Dual-Layer Spectral CT as Innovative Imaging Guidance in Lung Biopsies: Could Color-Coded Z-Effective Images Allow More Diagnostic Samplings and Biomarkers Information?

    Get PDF
    The aim of the study was to try to obtain more information on diagnostic samplings and biomarkers using dual-layer spectral CT in lung biopsies. Lung biopsies were performed by merging images obtained with CBCT with those from spectral CT to use them as functional guidance, experimenting with double sampling to determine the difference between the area with a higher Z-effective number and that with a lower Z-effective number. Ten patients with large lung lesions on spectral CT were selected and underwent percutaneous transthoracic lung mass biopsy. Technical success was calculated. The percentage of neoplastic, inflammatory, fibrotic, necrotic cells, or non-neoplastic lung parenchyma was reported. The possibility of carrying out immunohistochemical or molecular biology investigations was analyzed. All lesions were results malignant in 10/10 samples in the Zmax areas; in the Zmin areas, malignant cells were found in 7/10 samples. Technical success was achieved in 100% of cases for Zmax sampling and in 70% for Zmin sampling (p-value: 0.2105). The biomolecular profile was detected in 9/10 (90%) cases in Zmax areas, while in 4/10 (40%) cases in Zmin areas (p-value: 0.0573). The advantage of Z-effective imaging would be to identify a region of the lesion that is highly vascularized and probably richer in neoplastic cells, thus decreasing the risk of obtaining a non-diagnostic biopsy sample

    Percutaneous Application of High Power Microwave Ablation With 150 W for the Treatment of Tumors in Lung, Liver, and Kidney: A Preliminary Experience

    Get PDF
    Objective: The aim of this study is to evaluate the feasibility, safety, and short-term effectiveness of a high-power (150 W) microwave ablation (MWA) device for tumor ablation in the lung, liver, and kidney. Methods: Between December 2021 and June 2022, patients underwent high-power MWA for liver, lung, and kidney tumors. A retrospective observational study was conducted in accordance with the Declaration of Helsinki. The MWA system utilized a 150-W, 2.45-GHz microwave generator (Emprint™ HP Ablation System, Medtronic). The study assessed technical success, safety, and effectiveness, considering pre- and post-treatment diameter and volume, lesion location, biopsy and/or cone beam computed tomography (CBCT) usage, MWA ablation time, MWA power, and dose-area product (DAP). Results: From December 2021 to June 2022, 16 patients were enrolled for high-power MWA. Treated lesions included hepatocellular carcinoma (10), liver metastasis from colon cancer (1), liver metastasis from pancreatic cancer (1), squamous cell lung carcinoma (2), renal cell carcinoma (1), and renal oncocytoma (1). Technical success rate was 100%. One grade 1 complication (6.25%) was reported according to CIRSE classification. Overall effectiveness was 92.8%. Pre- and post-treatment mean diameters for liver lesions were 19.9 mm and 37.5 mm, respectively; for kidney lesions, 34 mm and 35 mm; for lung lesions, 29.5 mm and 31.5 mm. Pre- and post-treatment mean volumes for liver lesions were 3.4 ml and 24 ml, respectively; for kidney lesions, 8.2 ml and 20.5 ml; for lung lesions, 10.2 ml and 32.7 ml. The mean ablation time was 48 minutes for liver, 42.5 minutes for lung, and 42.5 minutes for renal ablation. The mean DAP for all procedures was 40.83 Gcm2. Conclusion: This preliminary study demonstrates the feasibility, safety, and effectiveness of the new 150 W MWA device. Additionally, it shows reduced ablation times for large lesions

    Applying the ALARA concept to the evaluation of vesicoureteric reflux

    Get PDF
    The voiding cystourethrogram (VCUG) is a widely used study to define lower urinary tract anatomy and to diagnose vesicoureteric reflux (VUR) in children. We examine the technical advances in the VCUG and other examinations for reflux that have reduced radiation exposure of children, and we give recommendations for the use of imaging studies in four groups of children: (1) children with urinary tract infection, (2) siblings of patients with VUR, (3) infants with antenatal hydronephrosis (ANH), and (4) children with a solitary functioning kidney. By performing examinations with little to no radiation, carefully selecting only the children who need imaging studies and judiciously timing follow-up examinations, we can reduce the radiation exposure of children being studied for reflux

    Virtual non-contrast spectral CT in renal masses: is it time to discard conventional unenhanced phase?

    No full text
    Dual-layer Dual-Energy CT (dl-DECT) allows one to create virtual non-contrast (VNC) reconstructions from contrast-enhanced CT scans, with a consequent decrease of the radiation dose. This study aims to assess the reliability of VNC for the diagnostic evaluation of renal masses in comparison with true non-contrast (TNC) images. The study cohort included 100 renal masses in 40 patients who underwent dl-DECT between June and December 2021. Attenuation values and standard deviations were assessed through the drawing of regions of interest on TNC and VNC images reconstructed from corticomedullary and nephrographic phases. A Wilcoxon signed-rank test was performed in order to assess equivalence of data and Spearman’s Rho correlation coefficient to evaluate correlations between each parameter. The diagnostic accuracy of VNC was estimated through the performance of receiver operating characteristic (ROC) curve analysis. Differences between attenuation values were, respectively, 74%, 18%, 5% and 3% (TNC-VNCcort), and 74%, 15%, 9% and 2% (TNC-VNCneph). The Wilcoxon signed-rank test demonstrated the equivalence of attenuation values between the TNC and VNC images. The diagnostic performance of VNC images in the depiction of kidney simple cysts remains high compared to TNC (VNCcort-AUC: 0.896; VNCneph-AUC: 0.901, TNC-AUC: 0.903). In conclusion, quantitative analysis of attenuation values showed a strong agreement between VNC and TNC images in the evaluation of renal masses
    corecore