14 research outputs found

    Observations of surface radiation and stratospheric processes at Thule Air Base, Greenland, during the IPY

    Get PDF
    Ground-based measurements of atmospheric parameters have been carried out for more than 20 years at the Network for the Detection of Atmospheric Composition Change (NDACC) station at Thule Air Base (76.5°N, 68.8°W), on the north-western coast of Greenland. Various instruments dedicated to the study of the lower and middle polar atmosphere are installed at Thule in the framework of a long standing collaboration among Danish, Italian, and US research institutes and universities. This effort aims at monitoring the composition, structure and dynamics of the polar stratosphere, and at studying the Arctic energy budget and the role played by different factors, such as aerosols, water vapour, and surface albedo. During the International Polar Year (IPY), in winter 2008-2009, an intensive measurement campaign was conducted at Thule within the framework of the IPY project “Ozone layer and UV radiation in a changing climate evaluated during IPY” (ORACLE-O3) which sought to improve our understanding of the complex mechanisms that lead to the Arctic stratospheric O3 depletion. The campaign involved a lidar system, measuring aerosol backscatter and depolarization ratios up to 35 km and atmospheric temperature profiles from 25 to 70 km altitude, a ground-based millimeter-wave spectrometer (GBMS) used to derive stratospheric mixing ratio profiles of different chemical species involved in the stratospheric ozone depletion cycle, and then ground-based radiometers and a Cimel sunphotometer to study the Arctic radiative budget at the surface. The observations show that the surface radiation budget is mainly regulated by the longwave component throughout most of the year. Clouds have a significant impact contributing to enhance the role of longwave radiation. Besides clouds, water vapour seasonal changes produce the largest modification in the shortwave component at the surface, followed by changes in surface albedo and in aerosol amounts. For what concerns the middle atmosphere, during the first part of winter 2008-2009 the cold polar vortex allowed for the formation of polar stratospheric clouds (PSCs) which were observed above Thule by means of the lidar. This period was also characterized by GBMS measurements of low values of O3 due to the catalytic reactions prompted by the PSCs. In mid- January, as the most intense Sudden Stratospheric Warming event ever observed in the Arctic occurred, GBMS and lidar measurements of O3, N2O, CO and temperature described its evolution as it propagated from the upper atmosphere to the lower stratosphere

    Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic

    Get PDF
    AbstractThis study examines the relationships linking methanesulfonic acid (MSA, arising from the atmospheric oxidation of the biogenic dimethylsulfide, DMS) in atmospheric aerosol, satellite-derived chlorophyll a (Chl-a), and oceanic primary production (PP), also as a function of sea ice melting (SIM) and extension of the ice free area in the marginal ice zone (IF-MIZ) in the Arctic. MSA was determined in PM10 samples collected over the period 2010–2012 at two Arctic sites, Ny Ålesund (78.9°N, 11.9°E), Svalbard islands, and Thule Air Base (76.5°N, 68.8°W), Greenland. PP is calculated by means of a bio-optical, physiologically based, semi-analytical model in the potential source areas located in the surrounding oceanic regions (Barents and Greenland Seas for Ny Ålesund, and Baffin Bay for Thule). Chl-a peaks in May in the Barents sea and in the Baffin Bay, and has maxima in June in the Greenland sea; PP follows the same seasonal pattern of Chl-a, although the differences in absolute values of PP in the three seas during the blooms are less marked than for Chl-a. MSA shows a better correlation with PP than with Chl-a, besides, the source intensity (expressed by PP) is able to explain more than 30% of the MSA variability at the two sites; the other factors explaining the MSA variability are taxonomic differences in the phytoplanktonic assemblages, and transport processes from the DMS source areas to the sampling sites. The taxonomic differences are also evident from the slopes of the correlation plots between MSA and PP: similar slopes (in the range 34.2–36.2 ng m−3of MSA/(gC m−2 d−1)) are found for the correlation between MSA at Ny Ålesund and PP in Barents Sea, and between MSA at Thule and PP in the Baffin Bay; conversely, the slope of the correlation between MSA at Ny Ålesund and PP in the Greenland Sea in summer is smaller (16.7 ng m−3of MSA/(gC m−2 d−1)). This is due to the fact that DMS emission from the Barents Sea and Baffin Bay is mainly related to the MIZ diatoms, which are prolific DMS producers, whereas in the Greenland Sea the DMS peak is related to an offshore pelagic bloom where low-DMS producer species are present. The sea ice dynamic plays a key role in determining MSA concentration in the Arctic, and a good correlation between MSA and SIM (slope = 39 ng m−3 of MSA/106 km2 SIM) and between MSA and IF-MIZ (slope = 56 ng m−3 of MSA/106 km2 IF-MIZ) is found for the cases attributable to bloomings of diatoms in the MIZ. Such relationships are calculated by combining the data sets from the two sites and suggest that PP is related to sea ice melting and to the extension of marginal sea ice areas, and that these factors are the main drivers for MSA concentrations at the considered Arctic sites

    Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic

    No full text
    This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (s) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (∆SWA), wv (DSWwv), and aerosols (∆SWs) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm-2 (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm-2 (+4.5%). The annual mean radiative effect is estimated to be -(21–22) Wm-2 for wv, and +(2–3) Wm-2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ∆SWwv by 0.93 Wm-2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in ∆SWA by 0.41 Wm-2 (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm-2 (-6.7%). The instantaneous aerosol radiative forcing (RFs) reaches values of -28 Wm-2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEs) for solar zenith angles between 55 and 70 is estimated to be (-120.6 ± 4.3) for 0.1<A<0.2, and (-41.2 ± 1.6) Wm-2 for 0.5<A<0.6

    Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic

    No full text
    This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (s) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (∆SWA), wv (DSWwv), and aerosols (∆SWs) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm-2 (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm-2 (+4.5%). The annual mean radiative effect is estimated to be -(21–22) Wm-2 for wv, and +(2–3) Wm-2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ∆SWwv by 0.93 Wm-2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in ∆SWA by 0.41 Wm-2 (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm-2 (-6.7%). The instantaneous aerosol radiative forcing (RFs) reaches values of -28 Wm-2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEs) for solar zenith angles between 55 and 70 is estimated to be (-120.6 ± 4.3) for 0.1<A<0.2, and (-41.2 ± 1.6) Wm-2 for 0.5<A<0.6.Published953-9691.10. TTC - Telerilevamento3.7. Dinamica del clima e dell'oceanoJCR Journalrestricte

    Radiative measurements at Thule, Greenland: factors affecting the cloud-free shortwave and longwave radiative budget in the Arctic

    No full text
    The Arctic region plays a central role in the global climate system. Modifications in the Arctic radiative budget may strongly influence large scale atmospheric and oceanic circulation. The evaluation of the surface energy balance sensitivity to variations in several parameters, such as surface temperature, water vapour content, surface albedo, and atmospheric aerosols, is one of the main issues in assessing how the Arctic will respond to future climate changes. The NDACC station at Thule Air Base (76.5°N, 68.8°W) is equipped with a variety of instruments for the measurement of the radiative fluxes at the surface, aerosol optical properties, water vapour atmospheric content, and meteorological parameters. A Yankee Environmental System Total Solar Pyranometer (YES-TSP) and an Eppley pyrgeometer (PIR) are installed at Thule for the measurement of the global shortwave and longwave downward irradiances at the surface. The TSP was installed in 2002, while the PIR in 2009. A Cimel Sunphotometer measures aerosol optical properties and water vapour columnar content; the Cimel is part of the Aerosol Robotic Network and was installed in 2007. In winter, the water vapour columnar content is also measured at Thule with a millimeter-wave spectrometer (GBMS) operating in the 230-280 GHz range. GBMS measurements have been carried out during several winters between 2002 and 2011. A meteorological station, which measures surface temperature and pressure, relative humidity, wind speed and direction is also continuously operational at Thule. Satellite observations of the surface shortwave albedo obtained from MODIS have been used together with ground-based measurements. Four years (2007 to 2010) of surface shortwave irradiance at the surface, aerosol optical properties, and water vapour have been combined with satellite observations of the surface albedo. Radiative transfer model calculations are used to reproduce the observed shortwave fluxes and to separate the effects of the different parameters in modulating the cloud-free downward shortwave radiation at the ground. Water vapour is the main factor affecting the cloud-free shortwave irradiance at the surface. Its column value varies between 0.1 and 1.4 cm during the period spring to early autumn. Water vapour produces a reduction of the surface shortwave flux by -(2ï‚ž12%). The surface albedo varies between 0.05 and 0.66 in the period March to September, with values larger than 0.5 in spring and smaller than 0.1 in summer. In spring the surface albedo induces an increase by +(2-4.5%) in the downward shortwave radiation. The aerosol optical depth at 500 nm is generally lower than 0.2; atmospheric aerosols produce a reduction in the shortwave radiation down to -5%. On annual base, the mean effects of water vapour and surface albedo are estimated to be –(10-11) Wm-2 and +(2-3) Wm-2, respectively. The temperature and humidity profiles in the troposphere have the strongest influence on the cloud-free downwelling longwave irradiance. In wintertime, in absence of solar radiation, the longwave fluxes dominate the surface radiation budget. GBMS water vapour measurements from winters 2009 to 2011 have been used, together with surface humidity and temperature, to investigate the relative influence of these factors in affecting the downwelling longwave irradiance
    corecore