5 research outputs found

    Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry

    No full text
    A cell-based biosensor system was designed for monitoring an anaerobic process for treatment of high biochemical oxygen demand (BOD) levels in wastewater samples from a factory processing concentrated rubber latex. The BOD biosensor used immobilized mixed culture of microorganisms as the biological sensing element and an oxygen electrode as the transducer. The assay principle is based on the determination of the oxygen consumption rate caused by microbial respiration. Synthetic wastewater according to the OECD specifications was used as standard solution for calibration of the BOD biosensor. Response time of the sensor was 10-15 min. The BOD of the influent and the effluent from an anaerobic reactor was measured using both the cell-based biosensor system and a standard method (BOD5). Good agreement was achieved between the results from the two assay methods with a percentage difference of less than 10%. However, when exposing the mixed culture to wastewaters from other industrial plants the agreement between the results of the two assays was poor. The anaerobic treatment of the wastewater from the concentrated latex process resulted in a COD removal efficiency of 97% at a hydraulic retention time (HRT) of 50 days. The BOD biosensor was successfully applied to off-line and on-line monitoring of the anaerobic reactor treatment process

    A comparative study of capacitive immunosensors based on self-assembled monolayers formed from thiourea, thioctic acid, and 3-mercaptopropionic acid

    No full text
    A procedure was developed for the covalent coupling of anti-alpha-fetoprotein antibody (anti-AFP) to a gold surface modified with a self-assembled monolayer (SAM) of thiourea (TU). The performance of the SAM-antibody layer was compared to those of similar layers based on thioctic acid (TA) and 3-mercaptopropionic acid (MPA) by using flow injection capacitive immunosensor system. Covalent coupling of anti-AFP on self-assembled thiourea monolayer (SATUM) modified gold electrode can be used to detect alpha-fetoprotein with high efficiency, similar sensitivity, the same linear range (0.01-10 mu g l(-1)) and detection limit (10ng l(-1)) as those obtained from sensors based on self-assembled thioctic acid monolayer (SATAM) and self-assembled 3-mercaptopropionic acid monolayer (SAMPAM). The system is specific for alpha-fetoprotein and can be regenerated and reused up to 48 times. Therefore, self-assembled monolayer using thiourea which is cheaper than thioctic acid and 3-mercaptopropionic acid is a good alternative for biosensor applications when SAMs are used. (c) 2006 Elsevier B.V. All rights reserved

    Real-time label-free affinity biosensors for enumeration of total bacteria based on immobilized concanavalin A

    No full text
    This work presents the results of the use of flow injection surface plasmon resonance and impedimetric affinity biosensors for detecting and enumerating total bacteria based on the binding between E. coli and Con A, immobilized on amodified gold electrode. The single analysis time for both techniques was less than 20 min. Dissociation between the immobilized Con A and the E. coli using 200 mM of glucose in HClt at pH of 2.00 enabling the sensor to be reused for between 29-35 times. Impedimetric detection provided a much lower limit of detection (12 CFU mL(-1)) than the surface plasmon resonance method (6.1 x 10(7) CFU mL(-1)). Using the impedimetric system, real sample analysis was performed and the results were compared to the plate count agar method. Cell concentrations obtained by the biosensor were only slightly different from the result obtained from the plate count agar. The proposed system offers a rapid and useful tool for screening detection and enumeration of total bacteria

    Capacitive biosensor for quantification of trace amounts of DNA

    No full text
    A flow injection capacitive biosensor system to detect trace amounts DNA has been developed based on the affinity binding between immobilized histone and DNA. Histones from calf thymus and shrimp were immobilized on gold electrodes covered with self-assembled monolayer (SAM) of thioctic acid. Each of these histones was used to detect DNA from calf thymus, shrimp and Escherichia coli. The studies indicated that histones can bind better with DNA from the same source and give higher sensitivity than the binding with DNA from different sources. Under optimum conditions, both histones from calf thymus and shrimp provided the same lower detection limit of 10(-5) ng l(-1) for DNA from different sources, i.e., calf thymus, shrimp and E. coli. The standard curve for the affinity reaction between calf thymus histone and DNA shows sigmoidal behavior and two linear ranges, 10(-5) to 10(-2) ng l(-1) and 10(-1) to 10(2) ng l(-1), could be obtained. The immobilized histones were stable and after regeneration good reproducibility of the signal could be obtained up to 43 times with a %R.S.D. of 3.1. When applied to analyze residual DNA in crude protein extracted from white shrimp recoveries were obtained between 80% and 116%. (c) 2009 Elsevier B.V. All rights reserved
    corecore