2 research outputs found

    How to Compute Worst-Case Execution Time by Optimization Modulo Theory and a Clever Encoding of Program Semantics

    No full text
    International audienceIn systems with hard real-time constraints, it is necessary to compute upper bounds on the worst-case execution time (WCET) of programs; the closer the bound to the real WCET, the better. This is especially the case of synchronous reactive control loops with a fixed clock; the WCET of the loop body must not exceed the clock period. We compute the WCET (or at least a close upper bound thereof) as the solution of an optimization modulo theory problem that takes into account the semantics of the program, in contrast to other methods that compute the longest path whether or not it is feasible according to these semantics. Optimization modulo theory extends satisfiability modulo theory (SMT) to maximization problems. Immediate encodings of WCET problems into SMT yield formulas intractable for all current production-grade solvers; this is inherent to the DPLL(T) approach to SMT implemented in these solvers. By conjoining some appropriate "cuts" to these formulas, we considerably reduce the computation time of the SMT-solver. We experimented our approach on a variety of control programs, using the OTAWA analyzer both as baseline and as underlying microarchitectural analysis for our analysis, and show notable improvement on the WCET bound on a variety of benchmarks and control programs

    Towards Formal Co-validation of Hardware and Software Timing Models of CPSs

    No full text
    International audienceTiming analysis of safety-critical systems derives timing bounds of applications, or software (SW), executed on dedicated platforms, or hardware (HW). The ensemble HW–SW features, from a timing perspective, two different types of computation – a SW-specific, instruction-driven timing progression and a HW-specific, cycle-driven one. The two timings are unified under a concept of timing model, which is crucial to establish a sound and precise worst-case timing reasoning. In this paper, we propose an investigation on how to systematically derive and formally prove such timing models. Our approach is exemplified on a simple, accumulator-based processor called Lipsi
    corecore