8 research outputs found

    Accurate Iris Localization Using Edge Map Generation and Adaptive Circular Hough Transform for Less Constrained Iris Images

    Get PDF
    This paper proposes an accurate iris localization algorithm for the iris images acquired under near infrared (NIR) illuminations and having noise due to eyelids, eyelashes, lighting reflections, non-uniform illumination, eyeglasses and eyebrow hair etc. The two main contributions in the paper are an edge map generation technique for pupil boundary detection and an adaptive circular Hough transform (CHT) algorithm for limbic boundary detection, which not only make the iris localization more accurate but faster also. The edge map for pupil boundary detection is generated on intersection (logical AND) of two binary edge maps obtained using thresholding, morphological operations and Sobel edge detection, which results in minimal false edges caused by the noise. The adaptive CHT algorithm for limbic boundary detection searches for a set of two arcs in an image instead of a full circle that counters iris-occlusions by the eyelids and eyelashes. The proposed CHT and adaptive CHT implementations for pupil and limbic boundary detection respectively use a two-dimensional accumulator array that reduces memory requirements. The proposed algorithm gives the accuracies of 99.7% and 99.38% for the challenging CASIA-Iris-Thousand (version 4.0) and CASIA-Iris-Lamp (version 3.0) databases respectively. The average time cost per image is 905 msec. The proposed algorithm is compared with the previous work and shows better results

    Hardware implementation of a novel edge-map generation technique for pupil detection in NIR images

    No full text
    This paper proposes an edge-map generation technique for pupil detection in near infrared (NIR) images and its hardware implementation. The proposed edge-map generation technique is based on generating two different edge-maps of same eye image using Gaussian filtering, image binarization and Sobel edge detection operations and then combining them to a single edge-map using intersection operation on binary images. This technique reduces the false edges drastically in the edge-map of eye image, which is desirable for accurate and fast pupil detection. Field programmable logic array (FPGA) based hardware implementation of the proposed technique is presented, which can be used in iris localization system on FPGA based platforms for iris recognition application. The proposed edge-map generation hardware is a parallel-pipelined implementation

    A Novel Edge-Map Creation Approach for Highly Accurate Pupil Localization in Unconstrained Infrared Iris Images

    Get PDF
    Iris segmentation in the iris recognition systems is a challenging task under noncooperative environments. The iris segmentation is a process of detecting the pupil, iris’s outer boundary, and eyelids in the iris image. In this paper, we propose a pupil localization method for locating the pupils in the non-close-up and frontal-view iris images that are captured under near-infrared (NIR) illuminations and contain the noise, such as specular and lighting reflection spots, eyeglasses, nonuniform illumination, low contrast, and occlusions by the eyelids, eyelashes, and eyebrow hair. In the proposed method, first, a novel edge-map is created from the iris image, which is based on combining the conventional thresholding and edge detection based segmentation techniques, and then, the general circular Hough transform (CHT) is used to find the pupil circle parameters in the edge-map. Our main contribution in this research is a novel edge-map creation technique, which reduces the false edges drastically in the edge-map of the iris image and makes the pupil localization in the noisy NIR images more accurate, fast, robust, and simple. The proposed method was tested with three iris databases: CASIA-Iris-Thousand (version 4.0), CASIA-Iris-Lamp (version 3.0), and MMU (version 2.0). The average accuracy of the proposed method is 99.72% and average time cost per image is 0.727 sec
    corecore