80 research outputs found

    Chronic kidney disease after liver, cardiac, lung, heart–lung, and hematopoietic stem cell transplant

    Get PDF
    Patient survival after cardiac, liver, and hematopoietic stem cell transplant (HSCT) is improving; however, this survival is limited by substantial pretransplant and treatment-related toxicities. A major cause of morbidity and mortality after transplant is chronic kidney disease (CKD). Although the majority of CKD after transplant is attributed to the use of calcineurin inhibitors, various other conditions such as thrombotic microangiopathy, nephrotic syndrome, and focal segmental glomerulosclerosis have been described. Though the immunosuppression used for each of the transplant types, cardiac, liver and HSCT is similar, the risk factors for developing CKD and the CKD severity described in patients after transplant vary. As the indications for transplant and the long-term survival improves for these children, so will the burden of CKD. Nephrologists should be involved early in the pretransplant workup of these patients. Transplant physicians and nephrologists will need to work together to identify those patients at risk of developing CKD early to prevent its development and progression to end-stage renal disease

    Advances in methods for surveillance of rejection

    No full text

    Ex Vivo Paracrine Properties Of Cardiac Tissue: Effects Of Chronic Heart Failure

    No full text
    Background Cardiac regenerative responses are responsive to paracrine factors. We hypothesize that chronic heart failure (HF) in pediatric patients affects cardiac paracrine signaling relevant to resident c-kit+cluster of differentiation (CD)34- cardiac stem cells (CSCs). Methods Discarded atrial septum (huAS) and atrial appendages (huAA) from pediatric patients with HF (huAA-HF; n = 10) or without HF (n = 3) were explanted and suspension explant cultured in media. Conditioned media were screened for 120 human factors using unedited monoclonal antibody-based arrays. Significantly expressed (relative chemiluminescence \u3e30 of 100) factors are reported (secretome). Emigrated cells were immunoselected for c-kit and enumerated as CSCs. Results After culture Day 7, CSCs emigrate from huAA but not huAS. The huAA secretome during CSC emigration included hepatocyte growth factor (HGF), epithelial cell-derived neutrophil attractant-78 (ENA-78)/chemokine (C-X-C motif) ligand (CXCL) 5, growth-regulated oncogene-α (GRO-α)/CXCL1, and macrophage migration inhibitory factor (MIF), candidate pro-migratory factors not present in the huAS secretome. Survival/proliferation of emigrated CSCs required coculture with cardiac tissue or tissue-conditioned media. Removal of huAA (Day 14) resulted in the loss of all emigrated CSCs (Day 28) and in decreased expression of 13 factors, including HGF, ENA-78/CXCL5, urokinase-type plasminogen activator receptor (uPAR)/CD87, and neutrophil-activating protein-2 (NAP-2)/CXCL7 candidate pro-survival factors. Secretomes of atrial appendages from HF patients have lower expression of 14 factors, including HGF, ENA-78/CXCL5, GRO-α/CXCL1, MIF, NAP-2/CXCL7, uPAR/CD87, and macrophage inflammatory protein-1α compared with AA from patients without HF. Conclusions Suspension explant culturing models paracrine and innate CSC interactions in the heart. In pediatric patients, heart failure has an enduring effect on the ex vivo cardiac-derived secretome, with lower expression of candidate pro-migratory and pro-survival factors for CSCs
    • …
    corecore