100 research outputs found

    Loo.py: transformation-based code generation for GPUs and CPUs

    Full text link
    Today's highly heterogeneous computing landscape places a burden on programmers wanting to achieve high performance on a reasonably broad cross-section of machines. To do so, computations need to be expressed in many different but mathematically equivalent ways, with, in the worst case, one variant per target machine. Loo.py, a programming system embedded in Python, meets this challenge by defining a data model for array-style computations and a library of transformations that operate on this model. Offering transformations such as loop tiling, vectorization, storage management, unrolling, instruction-level parallelism, change of data layout, and many more, it provides a convenient way to capture, parametrize, and re-unify the growth among code variants. Optional, deep integration with numpy and PyOpenCL provides a convenient computing environment where the transition from prototype to high-performance implementation can occur in a gradual, machine-assisted form

    StochKit-FF: Efficient Systems Biology on Multicore Architectures

    Full text link
    The stochastic modelling of biological systems is an informative, and in some cases, very adequate technique, which may however result in being more expensive than other modelling approaches, such as differential equations. We present StochKit-FF, a parallel version of StochKit, a reference toolkit for stochastic simulations. StochKit-FF is based on the FastFlow programming toolkit for multicores and exploits the novel concept of selective memory. We experiment StochKit-FF on a model of HIV infection dynamics, with the aim of extracting information from efficiently run experiments, here in terms of average and variance and, on a longer term, of more structured data.Comment: 14 pages + cover pag

    Porting Decision Tree Algorithms to Multicore using FastFlow

    Full text link
    The whole computer hardware industry embraced multicores. For these machines, the extreme optimisation of sequential algorithms is no longer sufficient to squeeze the real machine power, which can be only exploited via thread-level parallelism. Decision tree algorithms exhibit natural concurrency that makes them suitable to be parallelised. This paper presents an approach for easy-yet-efficient porting of an implementation of the C4.5 algorithm on multicores. The parallel porting requires minimal changes to the original sequential code, and it is able to exploit up to 7X speedup on an Intel dual-quad core machine.Comment: 18 pages + cove

    Refactoring GrPPI:Generic Refactoring for Generic Parallelism in C++

    Get PDF
    Funding: EU Horizon 2020 project, TeamPlay (https://www.teamplay-xh2020.eu), Grant Number 779882, UK EPSRC Discovery, grant number EP/P020631/1, and Madrid Regional Government, CABAHLA-CM (ConvergenciA Big dAta-Hpc: de Los sensores a las Aplicaciones) Grant Number S2018/TCS-4423.The Generic Reusable Parallel Pattern Interface (GrPPI) is a very useful abstraction over different parallel pattern libraries, allowing the programmer to write generic patterned parallel code that can easily be compiled to different backends such as FastFlow, OpenMP, Intel TBB and C++ threads. However, rewriting legacy code to use GrPPI still involves code transformations that can be highly non-trivial, especially for programmers who are not experts in parallelism. This paper describes software refactorings to semi-automatically introduce instances of GrPPI patterns into sequential C++ code, as well as safety checking static analysis mechanisms which verify that introducing patterns into the code does not introduce concurrency-related bugs such as race conditions. We demonstrate the refactorings and safety-checking mechanisms on four simple benchmark applications, showing that we are able to obtain, with little effort, GrPPI-based parallel versions that accomplish good speedups (comparable to those of manually-produced parallel versions) using different pattern backends.Publisher PDFPeer reviewe

    Automatic Skeleton-Driven Memory Affinity for Transactional Worklist Applications

    Get PDF
    doi: 10.1007/s10766-013-0253-xInternational audienceMemory affinity has become a key element to achieve scalable performance on multi-core platforms. Mechanisms such as thread scheduling, page allocation and cache prefetching are commonly employed to enhance memory affinity which keeps data close to the cores that access it. In particular, software transactional memory (STM) applications exhibit irregular memory access behavior that makes harder to determine which and when data will be needed by each core. Additionally, existing STM runtime systems are decoupled from issues such as thread and memory management. In this paper, we thus propose a skeleton-driven mechanism to improve memory affinity on STM applications that fit the worklist pattern employing a two-level approach. First, it addresses memory affinity in the DRAM level by automatic selecting page allocation policies. Then it employs data prefetching helper threads to improve affinity in the cache level. It relies on a skeleton framework to exploit the application pattern in order to provide automatic memory page allocation and cache prefetching. Our experimental results on the STAMP benchmark suite show that our proposed mechanism can achieve performance improvements of up to 46 %, with an average of 11 %, over a baseline version on two NUMA multi-core machines
    • …
    corecore