8,658 research outputs found

    Physical state representations and gauge fixing in string theory

    Full text link
    We re-examine physical state representations in the covariant quantization of bosonic string. We especially consider one parameter family of gauge fixing conditions for the residual gauge symmetry due to null states (or BRST exact states), and obtain explicit representations of observable Hilbert space which include those of the DDF states. This analysis is aimed at giving a necessary ingredient for the complete gauge fixing procedures of covariant string field theory such as temporal or light-cone gauge.Comment: 16 page

    Prompt GeV-TeV Emission of Gamma-Ray Bursts Due to High-Energy Protons, Muons and Electron-Positron Pairs

    Full text link
    In the framework of the internal shock scenario, we model the broadband prompt emission of gamma-ray bursts (GRBs) with emphasis on the GeV-TeV bands, utilizing Monte Carlo simulations that include various processes associated with electrons and protons accelerated to high energies. While inverse Compton emission from primary electrons is often dominant, different proton-induced mechanisms can also give rise to distinct high-energy components, such as synchrotron emission from protons, muons or secondary electrons/positrons injected via photomeson interactions. In some cases, they give rise to double spectral breaks that can serve as unique signatures of ultra-high-energy protons. We discuss the conditions favorable for such emission, and how they are related to the production of ultra-high-energy cosmic rays and neutrinos in internal shocks. Ongoing and upcoming observations by {\it GLAST}, atmospheric Cerenkov telescopes and other facilities will test these expectations and provide important information on the physical conditions in GRB outflows.Comment: 11 pages, 8 figures and 14 appendix figures, accepted for publication in ApJ vol. 671 with minor revision

    A critical analysis of self-supervision, or what we can learn from a single image

    Full text link
    We look critically at popular self-supervision techniques for learning deep convolutional neural networks without manual labels. We show that three different and representative methods, BiGAN, RotNet and DeepCluster, can learn the first few layers of a convolutional network from a single image as well as using millions of images and manual labels, provided that strong data augmentation is used. However, for deeper layers the gap with manual supervision cannot be closed even if millions of unlabelled images are used for training. We conclude that: (1) the weights of the early layers of deep networks contain limited information about the statistics of natural images, that (2) such low-level statistics can be learned through self-supervision just as well as through strong supervision, and that (3) the low-level statistics can be captured via synthetic transformations instead of using a large image dataset.Comment: Accepted paper at the International Conference on Learning Representations (ICLR) 202

    Gamma Ray Bursts: recent results and connections to very high energy Cosmic Rays and Neutrinos

    Full text link
    Gamma-ray bursts are the most concentrated explosions in the Universe. They have been detected electromagnetically at energies up to tens of GeV, and it is suspected that they could be active at least up to TeV energies. It is also speculated that they could emit cosmic rays and neutrinos at energies reaching up to the 1018−102010^{18}-10^{20} eV range. Here we review the recent developments in the photon phenomenology in the light of \swift and \fermi satellite observations, as well as recent IceCube upper limits on their neutrino luminosity. We discuss some of the theoretical models developed to explain these observations and their possible contribution to a very high energy cosmic ray and neutrino background.Comment: 12 pages, 7 figures. Text of a plenary lecture at the PASCOS 12 conference, Merida, Yucatan, Mexico, June 2012; to appear in J.Phys. (Conf. Series

    Observability of surface Andreev bound states in a topological insulator in proximity to an s-wave superconductor

    Get PDF
    To guide experimental work on the search for Majorana zero-energy modes, we calculate the superconducting pairing symmetry of a three-dimensional topological insulator in combination with an s-wave superconductor. In analogy to the case of nanowires with strong spin-orbit coupling we show how the pairing symmetry changes across different topological regimes. We demonstrate that a dominant p-wave pairing relation is not sufficient to realize a Majorana zero-energy mode useful for quantum computation. Our main result of this paper is the relation between odd-frequency pairing and Majorana zero energy modes by using Green functions techniques in three-dimensional topological insulators in the so-called Majorana regime. We discuss thereafter how the pairing relations in the different regimes can be observed in the shape of the tunneling conductance of an s-wave proximized three-dimensional topological insulator. We will discuss the necessity to incorporate a ferromagnetic insulator to localize the zero-energy bound state to the interface as a Majorana mode.Comment: Accepted for publication in Journal of Physics: Condensed Matte

    Level Truncated Tachyon Potential in Various Gauges

    Full text link
    New gauge fixing condition with single gauge parameter proposed by the authors is applied to the level truncated analysis of tachyon condensation in cubic open string field theory. It is found that the only one real non-trivial extremum persists to appear in the well-defined region of the gauge parameter, while the other solutions are turned out to be gauge-artifacts. Contrary to the previously known pathology in the Feynman-Siegel gauge, tachyon potential is remarkably smooth enough around Landau-type gauge.Comment: 13 pages, 5 figures. For associated movie files, see http://hep1.c.u-tokyo.ac.jp/~kato/sft

    Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems

    Get PDF
    A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius
    • …
    corecore