57 research outputs found

    Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids

    Get PDF
    Orchid is an important ornamental plant in Indonesia due to their natural beauty of flowers. In the tropical forest, orchids are being acquired for trading and commercial market. Thus, the effort is required to proliferate orchid in large quantities for conservation and improve the floral variation for plant breeding. The purpose of this study is to develop a firmed methodology of molecular breeding of orchids using CRISPR/Cas9 KO system. The plant material used was Phalaenopsis amabilis protocorms growth on NP medium+pepton (2 g/L). Protocorm were submerged in the culture of Agrobacterium tumefaciens that Ti‐plasmid had been filled with a T‐DNA construct of a pRGEB32 vector harboring sgRNA with PDS3 sequence. Detection for transformants was confirmed by PCR using HPT primers (545 bp), Cas9 primers (402 bp), PDS primers (280 bp) and trnL‐F (1200 bp) as an internal control. The results showed that 0.96% PDS transformants were obtained from PDS3T2 lines. Several transformant showed pale leaf color compared to non‐transformant plants. This study suggests that the target gene has successfully edited by CRISPR/Cas9 system and could be applied for that functional gene editing in orchids

    Complete chemical structures of human mitochondrial tRNAs

    Get PDF
    Mitochondria generate most cellular energy via oxidative phosphorylation. Twenty-two species of mitochondrial (mt-)tRNAs encoded in mtDNA translate essential subunits of the respiratory chain complexes. mt-tRNAs contain post-transcriptional modifications introduced by nuclear-encoded tRNA-modifying enzymes. They are required for deciphering genetic code accurately, as well as stabilizing tRNA. Loss of tRNA modifications frequently results in severe pathological consequences. Here, we perform a comprehensive analysis of post-transcriptional modifications of all human mt-tRNAs, including 14 previously-uncharacterized species. In total, we find 18 kinds of RNA modifications at 137 positions (8.7% in 1575 nucleobases) in 22 species of human mt-tRNAs. An up-to-date list of 34 genes responsible for mt-tRNA modifications are provided. We identify two genes required for queuosine (Q) formation in mt-tRNAs. Our results provide insight into the molecular mechanisms underlying the decoding system and could help to elucidate the molecular pathogenesis of human mitochondrial diseases caused by aberrant tRNA modifications

    The role of cholesterol metabolism and various steroid abnormalities in autism spectrum disorders : A hypothesis paper

    Get PDF
    © 2017 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.Peer reviewedPublisher PD

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Appropriate size and dish combination of nutritional-balanced lunch boxes delivered to children under the government-funded meal service program in Korea

    No full text
    학위논문(석사) --서울대학교 대학원 :식품영양학과,2009.8.Maste

    Role of Rho GTPase Interacting Proteins in Subcellular Compartments of Podocytes

    No full text
    The first step of urine formation is the selective filtration of the plasma into the urinary space at the kidney structure called the glomerulus. The filtration barrier of the glomerulus allows blood cells and large proteins such as albumin to be retained while eliminating the waste products of the body. The filtration barrier consists of three layers: fenestrated endothelial cells, glomerular basement membrane, and podocytes. Podocytes are specialized epithelial cells featured by numerous, actin-based projections called foot processes. Proteins on the foot process membrane are connected to the well-organized intracellular actin network. The Rho family of small GTPases (Rho GTPases) act as intracellular molecular switches. They tightly regulate actin dynamics and subsequent diverse cellular functions such as adhesion, migration, and spreading. Previous studies using podocyte-specific transgenic or knockout animal models have established that Rho GTPases are crucial for the podocyte health and barrier function. However, little attention has been paid regarding subcellular locations where distinct Rho GTPases contribute to specific functions. In the current review, we discuss cellular events involving the prototypical Rho GTPases (RhoA, Rac1, and Cdc42) in podocytes, with particular focus on the subcellular compartments where the signaling events occur. We also provide our synthesized views of the current understanding and propose future research directions

    Suppressive Effect of Quercetin on Nitric Oxide Production from Nasal Epithelial Cells In Vitro

    No full text
    Nitric oxide (NO) is known to play pivotal roles as one of the final effector molecules in the development of allergic diseases, including allergic rhinitis (AR). Although quercetin has been reported to attenuate the clinical conditions of AR, its influence on NO production is not well defined. The present study aimed to examine the influence of quercetin on in vitro NO production from nasal epithelial cells after interleukin- (IL-) 4 stimulation. Human nasal epithelial cells (HNEpCs) at a concentration of 1 x 105 cells/ml were stimulated with 10.0 ng/ml of IL-4 in the presence and absence of quercetin. After 48 hours, the culture supernatants were collected and assayed for NO (NO2 and NO3) using the Griess method. The influences of quercetin on the transcription factor, STAT6, activation, and iNOS mRNA expression were also examined using ELISA and real-time quantitative RT-PCR, respectively. Addition of quercetin to cell cultures caused suppression of NO production from HNEpCs after IL-4 stimulation. The minimum concentration of quercetin that caused significant suppression was 1.0 nM. Treatment of cells with quercetin at more than 1.0 nM suppressed STAT6 activation and iNOS mRNA expression induced by IL-4 stimulation. The present results strongly suggested that quercetin favorably modified the clinical condition of AR through the suppression of NO production from nasal epithelial cells after IL-4 stimulation

    Current status of education and research on public health nutrition in Japan: comparison with South Korea, Taiwan, and mainland China

    Get PDF
    Background Although the importance of capacity building for public health nutrition (PHN) has been increasing globally, reports on the current status of training programs for PHN in East-Asia including Japan are limited. The aim of this study was to compare the current status of education and research activities in the field of PHN in Japan with those in South Korea, Taiwan, and mainland China. Methods Necessary information was collected by internet search and telephone inquiry. Collection focused on the number of departments in colleges and universities with PHN as a compulsory subject in the 2016 academic year, and the number of articles and information related to these articles published in the journal Public Health Nutrition between 2007 and 2016. Results The number of departments with PHN as a compulsory subject was the highest in Japan (n = 137), followed by mainland China (n = 32), Taiwan (n = 18) and South Korea (n = 7). Using the classification list of education in each country and region, the majority of these departments were classified as home economics, natural science, health and welfare, and medical science in Japan, South Korea, Taiwan, and mainland China, respectively. Regarding publications, most of the articles were written in colleges and universities not having PHN as a compulsory subject in Japan, South Korea, and Taiwan. The number of articles per department among departments with compulsory PHN education was lowest in Japan (n = 0.3) compared to Taiwan, mainland China, and South Korea (n = 1.2, 2.7, and 3.7, respectively). Conclusions Japan has a much higher number of departments with PHN as a compulsory subject than neighboring East Asian states and relatively low research activities in the field of PHN. This suggests that current university education may not lead to active PHN research in Japan. Further studies are warranted to explore the reasons for this.This study was funded by the Institute for Food and Health Science, Yazuya Co., Ltd. (Tokyo, Japan). The funding sources played no roles in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore