5 research outputs found

    Tetrahymena spp. (Protista, Ciliophora) as Test Species in Rapid Multilevel Ecotoxicity Tests

    Get PDF
    This review summarizes the application of Tetrahymena spp. in ecotoxicology, in order to promote a more integrated, multi-level ecotoxicological assessment approach regarding the effects of chemical stressors on several biological levels (from molecule to ecosystem). Such a multi-level testing approach in one species facilitates the establishment of missing causal relationships between biochemical responses and ecological effects. The review illustrates that Tetrahymena spp. represent excellent ecotoxicological test species due to their important role in the microbial foodweb, wide distribution and abundance, sequenced genome in T. thermophila, large background knowledge and scientific publications in cellular biology, ecology and ecotoxicology. Several bioassays have already been developed on different biological organisation levels, such as enzyme assays (biochemical level), behavioral tests (individual level), population growth tests (population level) and microcosms (community level). Moreover, specific mode-of-action based assays are available (e.g. genotoxicity), or are in development (e.g. endocrine disruption and neurotoxicity). Tetrahymena spp. combine traits of (1) a single cell, thus might replace or complement specific cell-line testing approaches, with traits of (2) a whole organism and population, thus allowing to study complete metabolic pathways and its consequences on population growth and genetic adaptation. Assays involving Tetrahymena spp. might easily be adapted for a rapid multi-level in situ or ex situ toxicity biosensor test system for ecologically relevant risk assessment

    Tetrahymena spp. (Protista, Ciliophora) as Test Species in Rapid Multilevel Ecotoxicity Tests

    No full text
    This review summarizes the application of Tetrahymena spp. in ecotoxicology, in order to promote a more integrated, multi-level ecotoxicological assessment approach regarding the effects of chemical stressors on several biological levels (from molecule to ecosystem). Such a multi-level testing approach in one species facilitates the establishment of missing causal relationships between biochemical responses and ecological effects. The review illustrates that Tetrahymena spp. represent excellent ecotoxicological test species due to their important role in the microbial foodweb, wide distribution and abundance, sequenced genome in T. thermophila, large background knowledge and scientific publications in cellular biology, ecology and ecotoxicology. Several bioassays have already been developed on different biological organisation levels, such as enzyme assays (biochemical level), behavioral tests (individual level), population growth tests (population level) and microcosms (community level). Moreover, specific mode-of-action based assays are available (e.g. genotoxicity), or are in development (e.g. endocrine disruption and neurotoxicity). Tetrahymena spp. combine traits of (1) a single cell, thus might replace or complement specific cell-line testing approaches, with traits of (2) a whole organism and population, thus allowing to study complete metabolic pathways and its consequences on population growth and genetic adaptation. Assays involving Tetrahymena spp. might easily be adapted for a rapid multi-level in situ or ex situ toxicity biosensor test system for ecologically relevant risk assessment

    Isolation, Identification and Genetic Characterization of Antibiotic Resistant <i>Escherichia coli</i> from Frozen Chicken Meat Obtained from Supermarkets at Dhaka City in Bangladesh

    No full text
    Antimicrobials have been used to improve animal welfare, food security, and food safety that promote the emergence, selection, and dissemination of antimicrobial-resistant (AMR) bacteria. In this study, 50 E. coli were isolated from frozen chicken meat samples in Dhaka city. Antibiotic sensitivity patterns were assessed through the disk diffusion method and finally screened for the presence of antimicrobial resistance genes (ARG) using the polymerase chain reaction (PCR). Among the 160 samples, the prevalence of E. coli was observed in fifty samples (31.25%). All of these isolates were found resistant to at least one antimicrobial agent, and 52.0% of the isolates were resistant against 4–7 different antimicrobials. High resistance was shown to tetracycline (66.0%), followed by resistance to erythromycin (42.0%), ampicillin and streptomycin (38.0%), and sulfonamide (28.0%). In addition, the most prevalent ARGs were tet(A) (66.0%), ereA (64.0%), tet(B) (60.0%), aadA1 and sulI (56.0%), blaCITM (48.0%) and blaSHV (40.0%). About 90.0% of isolates were multidrug resistant. This study reveals for the first time the current situation of E. coli AMR in broilers, which is helpful for the clinical control of disease as well as for the development of policies and guidelines to reduce AMR in broilers production in Bangladesh
    corecore