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Summary. This review summarizes the application of Tetrahymena spp. in ecotoxicology, in order to promote a more integrated, multi-level 
ecotoxicological assessment approach regarding the effects of chemical stressors on several biological levels (from molecule to ecosys-
tem). Such a multi-level testing approach in one species facilitates the establishment of missing causal relationships between biochemical 
responses and ecological effects. The review illustrates that Tetrahymena spp. represent excellent ecotoxicological test species due to their 
important role in the microbial foodweb, wide distribution and abundance, sequenced genome in T. thermophila, large background know-
ledge and scientific publications in cellular biology, ecology and ecotoxicology. Several bioassays have already been developed on differ-
ent biological organisation levels, such as enzyme assays (biochemical level), behavioral tests (individual level), population growth tests 
(population level) and microcosms (community level). Moreover, specific mode-of-action based assays are available (e.g. genotoxicity), or 
are in development (e.g. endocrine disruption and neurotoxicity). Tetrahymena spp. combine traits of (1) a single cell, thus might replace 
or complement specific cell-line testing approaches, with traits of (2) a whole organism and population, thus allowing to study complete 
metabolic pathways and its consequences on population growth and genetic adaptation. Assays involving Tetrahymena spp. might easily be 
adapted for a rapid multi-level in situ or ex situ toxicity biosensor test system for ecologically relevant risk assessment.
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WHY USING TETRAHYMENA SPP.  
FOR ECOTOXICOLOGICAL TESTS?

Tetrahymena spp. (Protozoa, Ciliata, Oligohymen-
ophorea) are non-pathogenic, free-living eukaryotes 

and ubiquitously distributed in nature (Sauvant et al. 
1999). Their abundance may indicate healthy aquatic 
environments, and they represent an important trophic 
level where bio-accumulation or bio-concentration are 
important processes (Cooley et al. 1972, Carter and 
Cameron 1973). 

Several other reviews previously stated the im-
portance of this genus for biological, ecological and 
toxicological studies (Sauvant et al. 1999, Lukacinova 
et al. 2007). Tetrahymena spp. feed on organic mat-
ter and bacteria, i.e. they are at the base of microbial 
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and the detritivore food webs. They play an important 
role as grazers of microbes in aquatic and soil envi-
ronments, controlling bacterio-plankton production. 
Use of these organisms in toxicity testing could help 
reduce the number of animals used in ecotoxicity test-
ing (Pauli et al. 1993, 2001). Because this genus can 
easily be cultured at high densities, bioassays with this 
genus enable the use of a large number of test orga-
nisms and replicates. Moreover, because they are uni-
cellular organisms, Tetrahymena spp. posses features 
of both single eukaryotic cells and whole organisms. 
Tetrahymena spp. can easily be cultivated in a variety 
of media and represent well-known model organisms in 
microbiology and cell biology, esp. T. pyriformis and T. 
thermophila. Compared to other protozoans, they are 
quite large (50–60 μm vs. 10 μm), they have a fast ge-
neration time (3–7 hours under optimal conditions in 
the exponential growth phase), and they show a high 
level of complexity, similar to that of metazoans and 
human epithelial tissue (Hausmann et al. 1996). 

Tetrahymena spp. possess nuclear dimorphism; two 
types of cell nuclei exist in a single cell and carry out 
different functions with distinct cytological and bio-
chemical properties (Collins and Gorovsky 2005). T. 
pyriformis is incapable of sexual reproduction as it does 
not possess a micronucleus. T. thermophila possesses 
a genetically fully sequenced macronucleus, thus facili-
tating the study of changes in gene expression patterns 
under pollution stress (toxicogenomics). Moreover, it 
possesses many core processes conserved across a wide 
diversity of eukaryotes (including humans) that are not 
found in other single-cell model systems (Brunk et al. 
1990, Eisen et al. 2006, Stover et al. 2006). There is 
also a statistically-significant correlation (r = 0.928; 
n = 52 substances) between the sensitivity or T. pyri-
formis and T. thermophila to various toxicants (Pauli 
et al. 2000).

Several studies have highligthed their potential as 
models in in vitro toxicological assessment of chemical 
pollutants using various endpoints (Carter and Cam-
eron 1973, Larsen et al. 1997, Pauli and Berger 1997, 
Sauvant et al. 1999, Bogaerts et al. 2001, Schultz et al. 
2005, Lukacinova et al. 2007) and their role in self-
purification of natural aquatic ecosystems (Cooley et 
al. 1972, Martin-Cereceda et al. 1996). Moreover, their 
role in Waste Water Treatments Plants through biode-
gradation and grazing activities enhances the biological 
stability and performance in WWTPs (Curds 1982, Ma-
doni et al. 1996, Cox and Deshusses 1997, Nicolau et 
al. 2001, Arregui et al. 2007). Additionally, Tetrahyme-

na spp. inactivated viruses in incubation media by the 
“killing the killer of the winner” principle, i.e. affecting 
indirectly virus levels by grazing on infected host bac-
teria and free phages (Kim and Unno 1996, Benyahya 
et al. 1997, Miki and Yamamura 2005, Pinheiro et al. 
2007). Tetrahymena spp. have shown to affect horizon-
tal gene transfer in a two-species microcosm consisting 
of Euglena gracilis and T. thermophila (Matsui et al. 
2000), such gene transfer might be important for bac-
terial evolution and adaptation, e.g. resistance to anti-
biotics (Esteban and Tellez 1992, Young 1993, Lorenz 
and Wackernagel 1994, Davison 1999). Because they 
are protozonas, they do not have a cell wall compared 
to the frequently used yeast, bacteria or algae cells in 
in vitro toxicity testing, which might affect uptake and 
availability of chemicals (Matsui et al. 2003), and they 
show a higher degree of functional similarity with hu-
man genes than other microbial model eukaryotes (Gal-
lego et al. 2007). 

The sensitivity of Tetrahymena spp. to toxic sub-
stances compared to other standard test species is com-
plex, e.g. the protozoan was less sensitive to herbicides 
than Vibrio fischeri, but more sensitive to metals (Ma-
doni et al. 1996). Tetrahymena spp. is also moderately 
sensitive to perfluorinated compounds (Wang et al. 
2010). Compared to Daphnia magna, Tetrahymena spp. 
was generally less sensitive (Fochtmann et al. 2000). 
Seward et al. (2002) assessed 127 chemicals using 
Poecilia reticulata and T. pyriformis, and found a good 
correlation in sensitivity for neutral narcotic chemicals 
(“baseline toxicity”). However, for polar narcotics and 
electrophilic substances exerting specific modes of ac-
tions, there were more differences in the interspecies 
comparison of sensitivity (Seward et al. 2002). Similar 
results have been found when comparing Pimephales 
promelas and T. pyriformis (Kahn et al. 2007). Hence, 
no single biotest can fully predict the ecological effects 
of substances, i.e. a biotest set consisting of comple-
mentary tests needs to be developed and applied for risk 
assessment. Fochtmann et al. (2000) reported that for 
T. thermophila there was no correlation among biotests 
using Tetrahymena and other species using 30 pesti-
cides, therefore T. thermophila provides complemen-
tary information regarding toxic action and sensitivity 
compared to algae and Microtox tests and should be 
part of a biotest set.

Tetrahymena spp. can easily be cultured and a large 
literature body of well-described methodology is avail-
able (De Corninck et al. 2004 ). Test conditions and 
media must consider the trade-offs between optimal 
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growth conditions for the species and potential arte-
facts due to, for example, binding of substances to or-
ganic matter (Jaworska and Wayne-Schultz 1994; Na-
lecz-Jawecki and Sawicki 2002; Nilsson 1989, 2003; 
Zhu et al. 2006), pH effects on substance availability, 
and mortality of the test species (Carter and Cameron 
1973, Schultz et al. 2003). However, Tetrahymena spp. 
has successfully been used in different types of environ-
mental samples including spring water, i.e. even without 
media (Dayeh et al. 2004, Leitgib et al. 2007, Massolo 
et al. 2002, Chen et al. 2008).

SUBCELLUAR BIOCHEMICAL BIOMARKER 
TESTS

Biochemical biomarkers can provide valuable in-
formation about the potential mode of toxic action of 
chemicals. For example, the relative percent of the fatty 
acid methyl esters might be used to study the physi-
cal accomodation of compounds into cell membranes 
(Bearden et al. 1999a, b; Schultz et al. 2002). Whereas 
narcotic effects (“baseline toxicity”) are a result of an 
unregulated, passive process resulting from severe cell 
damage, including loss of membrane integrity, swelling 
of the cytoplasm and cell rupture, apoptosis is a highly 
regulated process of cell death by plasma membrane 
bleeding, aggregation of nuclear chromatin, shrink-
age of cytoplasm. Bogaerts et al. (1998) determined 
the cytotoxic effects of several inorganic and organic 
compounds on T. pyriformis using the fluorescin di-
acetate assay (FDA) (Rotmann and Papermaster 1966; 
Bogaerts et al. 1998, 2001), which has also been shown 
to be a reliable indicator for cytotoxicity in marine mi-
croalgae (Gilbert et al. 1992). This assay revealed high-
er or at least similar sensitivity compared to Microtox 
and Daphnia spp. swimming inhibition assays. Other 
assays apply two or three dyes simultaneously, e.g. to 
stain nuclei of dead cells or mark additional cell func-
tions, e.g. by fluorescence markers (Dias et al. 2003, 
Dayeh et al. 2004), hence allowing for multi-parameter 
cytotoxicity tests, which can be performed on multiwell 
filter plates (Dayeh et al. 2005) instead of in traditional 
microcentrifuge tubes. 

Biomarkers for genotoxicity have traditionally been 
DNA-integrity and DNA-strand breakage (Gallo et al. 
2008). Tetrahymena spp. might be an excellent test spe-
cies for genotoxic effects as they have a large genome 
(Orias et al. 2000) and possess a complex eukaryotic 

cellular structure, which is an advantage for testing sub-
stances that need metabolic activation before showing 
genotoxic effects. Damage of the macronuclei in Tetra-
hymena spp. has been studied with image analysis (Ste-
fanidou et al. 2002, 2008) after staining the DNA with 
Feulgen reagent. Stefanidou et al. (1999, 2002) found 
that increase in DNA synthesis was correlated with 
suppression of phagocytosis under cocaine exposure. 
Increase in DNA content could also be recorded after 
exposure to tartazine, sodium nitrate, sodium benzoate 
and butylated hydroxyltoluene (Stefanidou 2008). The 
comet assay, or single-cell gel electrophoresis (Cotelle 
and Ferar 1999, Kassie et al. 2000, Hartmann et al. 
2001, Akcha et al. 2003) is a rapid and sensitive as-
say for genetic damage for different pro- and eukaryotic 
cells (Cotelle and Farard 1999), incl. Tetrahymena spp. 
(Lah et al. 2004). No difference was found when com-
paring the comet assay performance with different hu-
man cell lines and Tetrahymena spp. (Lah et al. 2005).

Enzyme biomarkers are used as indicators for the 
metabolic state of cells. Under toxicant exposure cells 
express defense mechanisms, which can be recflected 
by the acid phosphatase or dehydrogenase activity 
(MMT assay) or by antioxidant enzymes. The ATP con-
tent (Adenosin-Tri-Phosphate: as indicator of general 
energetic state) and the Acp activity (acid phosphatase: 
as indicator of intracellular digestive function) have 
both been valuable biomarkers of zinc and triton-X-100 
toxicity in T. pyriformis (Nicolau et al. 2004). Müller 
et al. (2006) have suggested that a combination of ATP 
content and oxygen consumption can be used to assess 
toxic effects of oxidative stress. Mountassif et al. (2007) 
suggested that determining D-β-hydroxybutyrate de-
hydrogenase (an inner mitochondrial membrane en-
zyme, well-studied in several species; Bergmeyer et 
al. 1967, Nielsen et al. 1973, Latruffe and Gaudemer 
1974), in addition to antioxidant enzymes, may achieve 
a more complete estimation of cellular detoxification 
processes.

Various substances from different chemical fami-
lies may exert endocrine disruptive effects in animals 
(Kase et al. 2009). Whereas several bioassays already 
determine estrogenic effects based on cell-lines from 
mammals (e.g. CALUX tests), Tetrahymena spp. also 
possess endogenous steroids (Csaba et al. 1985), even 
though the equivalents to mammalian steroid receptors 
cells have so far not been found. However, estrogen/
androgen receptor binding assays only cover a small 
percentage of endocrine disrupting effects. Steroidge-
nid assays based on Aromatase recording have recently 



A. Gerhardt et al. 274

been developed and validated for both fish (Hinfray et 
al. 2006) and animal cell lines (e.g. H 295 R) (Kase 
et al. 2009). Aromatase alteration was correlated with 
reproductive effects in fish from contaminated sites 
(Lavado et al. 2004), and laboratory tests with many 
different substances proved effects on Aromatase activ-
ity (Sanderson et al. 2000, 2002; Hinfray et al. 2006; 
Cheshenko et al. 2008). Because transformation of test-
osterone to estradiol was found in Tetrahymena spp., 
it might possess cytochrome P 450 aromatase as well 
(Csaba et al. 1998). 

Although Tetrahymena pyriformis does not possess 
a nervous system, they produce biogenic monoamines 
such as dopamine, adrenaline, noradrenaline and other 
catecholamines (Brizzi and Blum 1970, Goldman et al. 
1981, Gundersen and Thompson 1983, Le Roith and Roth 
1985, Takeda and Sugiyama 1993, Naokuni and Kanji 
1993). Neurotoxicity can be assessed with biomarkers 
such as levels of dopamine and its derivates Noradrena-
line and Adrenaline in Tetrahymena spp. (Ud-Daula et 
al. 2008), thus allowing to use this species in pharma-
cological studies of drugs to treat/prevent dopaminergic 
cell disorders related to human neurological and psychi-
artric diseases. Although the recent research indicates the 
existence of both the aromatase and dopaminergic path-
ways in Tetrahymena spp., the relevant DNA sequences 
remain unknown, which complicates the extrapolation of 
results to other/higher test species. 

Ecotoxicogenomics provides some potential for the 
development of new molecular biomarkers, because it 
provides insight in the effects of chemicals on gene ex-
pression patterns. The genome of the macronucleus in 
Tetrahymena thermophila has been sequenced in 2006 
(Eisen et al. 2006) and a genome database has been 
created (www.ciliate.org (Eisen et al. 2006, Stover et 
al. 2006)). Tetrahymena spp. have a fairly complete 
set of ancestral eukaryotic functions, and show a high 
degree of functional homology with human and mam-
malian genomes. Therefore, it has been suggested as 
a potential model organism in ecotoxicological moni-
toring (Fillingham et al. 2002, Turkewitz et al. 2002). 
For example, T. thermophila exposed to DDT or TBT 
showed changes in gene expression patterns using the 
suppression subtractive hybridization (SSH) library 
(Miao et al. 2006, Feng et al. 2007). However, extrapo-
lation from ecotoxicogenomic results to physiological 
responses, which are usually a consequence of complex 
gene interactions, remains difficult unless other bio-
markers on different biological levels are measured si-

multaneously. Tetrahymena can also be an alternative to 
several transfected reporter-gene cell-lines for e.g. tox-
ic evaluation of endocrine disruptors (e.g. Yeast assays, 
CALUX systems). For example, La Terza et al. (2008) 
tested soil elutriates from three agricultural farms us-
ing T. thermophila transfected with a green fluorescent 
protein gene under control of heat shock promotor el-
ements derived from the T. thermophila hsp70 gene. 
This assay is being further developed into a real-time 
in vivo biosensor system, and other and more specific 
promotor genes than hsp70 gene expression have to be 
developed, too.

INDIVIDUAL LEVEL BASED TESTS 

Behavioral endpoints have been developed as suit-
able indicators for both the individual fitness and eco-
system health, since they link biochemical processes 
on the suborganismal level to ecological consequences 
on the ecosystem level (Gerhardt 2007). Behavioral ef-
fects often occur at short response times, low toxicant 
concentrations and because they can be recorded in 
a non-destructive way just by observation in real-time 
and on repeated basis, allowing for time-series analysis 
(Gerhardt 2007). Behavioral studies with Tetrahymena 
spp. have concentrated on chemotaxis, phagocytosis 
and motility. The chemotactic response of Tetrahymena 
spp. has been proposed as indicator for the evaluation of 
contamination of water and soil (Koppelhus et al. 1994, 
Doi et al. 2005). Behavior has been studied in choice 
chambers (Leick and Helle 1983, Kohidai et al. 1999). 
For example, Gilron et al. (1999) developed a subleth-
al method to record the chemotactic response of Tet-
rahymena spp. Phagocytosis is an important defence 
mechanism, both in protozoans and in mammalian cells 
(Chiesa et al. 1993, Renaud et al. 1995). Additionally, 
filter-feeding activity of Tetrahymena pyriformis on 
fluorescent latex beads were studied under exposure to 
metals (copper, zinc) or Triton-X (Nicolau et al. 1999). 
This method was eventually automatized by advanced 
image analysis (Dias et al. 2003). In order to differenti-
ate between dead and living ciliates, genetically-modi-
fied bacteria were used, which carry a green fluorescent 
protein that looses its fluorescence in food vacuoles of 
the ciliate (Parry et al. 2001). The use of fluorimetric 
tests systems offers high throughput methods such as 
fluorescence microtiter plates (Parry et al. 2001) or 
flow cytometry (Fu et al. 2003). 
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Several other studies with Tetrahymena spp. have 
been performed to examine the relationship between 
ciliary movement, locomotion under exposure to cop-
per, morphine (Power et al. 2006) or single-walled car-
bon nanotubes (Ghafari et al. 2008). Naitoh and Eck-
ert (1969) showed that the rate and direction of ciliary 
beat of Tetrahymena spp. is affected by changes in ion 
permeability, especially Ca2+ and K+ ions, which are 
the most important ion channels in Tetrahymena spp., 
thus changing membrane potential. Goto et al. (1982) 
confirmed this by showing a correlation between swim-
ming speed and membrane fluidity. Toxicants which 
alter ion fluxes might thus have an inhibitory effect on 
swimming speed, which serves as easily accessible in-
dicator for membrane stability (Cassidy et al. 1989; Wu 
et al. 1994, 1996, 1997; Al-Saadi et al. 1981; Darcy et 
al. 2002), however, the precise background mechanism 
in membrane perturbation has still to be elucidated.

POPULATION LEVEL TEST METHODS

Under optimal culture conditions, Tetrahymena spp. 
grow first logarithmically, followed by a prestationary 
phase, ending in a stationary phase. In the log growth 
phase, the generation time can be as fast as 3–7 hours. 
Population growth can be recorded by different direct 
and indirect methods. Cell counts can be performed 
by an electronic particle counter or microscopically by 
a hemocytometer. According to the OECD (www.oecd.
org) the 50% inhibitory growth concentration (IGC50, 
mmol/l) is a widely applied toxicity endpoint. Indirect 
counting methods rely on spectrometric methods, such 
as the TETRATOX assay (Schultz 1997), measuring 
the tubidity of the medium caused by the population 
growth of the species, at 440 nm. Additionally to this 
fast, efficient and validated counting method (Larsen 
et al. 1997, Pauli and Berger 1997), toxicity tests with 
Tetrahymena spp. can be conducted in high throughput 
(e.g. microtiterplates, Sauvant et al. 1995) and in min-
iaturized microbioreactor systems (Ritzthaler 2006). 
A large database (TETRATOX, www.vet.ulk.edu/TET-
RATOX) for ca. 2.400 industrial organic chemicals has 
been developed, and serves as basis for linear or non-
linear QSAR development (e.g. Schultz et al. 2003, Ap-
tula et al. 2006). However, Stewart et al. (2001) found 
that toxic potency values of chemicals acting via the 
electro(nucleo)philic mode of action could have lower 
reproducibility using the TETRATOX assay. In addition 

to TETRATOX a miniaturized tox-kit (PrototoxkitTM) 
has been developed (Microbiotests Inc, Deinze, Bel-
gium), which is frequently used in ecotoxicological 
assessment of waste water, river water and sediments 
and considers 5–6 generations within a test duration 
of 24 hours (Kristiansen et al. 1996, Fochtmann et al. 
2000, Latif and Lieck 2004, Papadimitriou et al. 2008). 
For semi-volatile substances Wang et al. (2010) devel-
oped a closed test system with enough head space for 
the aerobic organisms, including a protocol to correct 
for estimation errors of the substance concentrations in 
the headspace. 

However, turbidity measurements might suffer from 
errors such as 1) lack of all dead organisms have pre-
cipitated, and 2) test substance or metabolism products 
might also affect turbidity. An alternative is microcalo-
rimetry, i.e. recording the change in heat production, 
which allows for automatic and non-invasive record-
ing of thermodynamic and kinetic data of aquatic ani-
mal species (Wegener and Moratzky 1995, Stangel and 
Wegener 1996) and Tetrahymena pyriformis (Beemann 
et al. 1999). Other studies that have successfully used 
microcalorimetry with Tetrahymena spp. in studying 
toxic effects on population growth are Wu et al. (2006), 
Chen et al. (2007) and Kong et al. (2009). Tetrahyme-
na spp. can be assessed directly, but also be used as 
“vehicle”, e.g. in the test system BACTOX (Schlimme 
et al. 1999). In the BACTOX assay, bacteria are co-
cultivated with Tetrahymena spp., and the alteration of 
Tetrahymena spp. population serves as indicator for the 
assessment of bacteria (Schlimme et al. 1999). 

MICROCOSM TESTS

Laboratory microcosms represent small model eco-
systems and consist of several interacting species, usu-
ally a foodweb. Kawabata et al. (1995) constructed 
a microcosm simulating the microbial food web with 
the flagellate algae Euglena gracilis as primary produc-
er, the ciliate T. thermophila as consumer and the bac-
terium Escherichia coli as decomposer. Matsui et al. 
(2000) found that the three species in this microcosm 
can co-exist for about one year, whereas in single cul-
tures the species cultures were less stable. This micro-
cosm has been used in several ecotoxicological stud-
ies of effects of y- or UV-radiation (Fuma et al. 1998, 
Takeda et al. 1998), nickel (Fuma et al. 1998a, b), man-
ganese, gadolinum (Fuma et al. 2001), acidification 
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(Miamoto et al. 1998), copper, aluminium (Fuma et al. 
2003) and dysprosium (Fuma et al. 2005). The effect 
index (EIM) is calculated as the difference in cell den-
sities between exposed and control microcosms by Eu-
clidean distances (Fuma et al. 2003). Doi et al. (2007) 
used a computer simulation model, where all constitu-
ents of the microcosm microbial food web are defined 
as factors of crucial functions for the sustainability of 
the system, e.g. by feeding on bacteria, T. thermophila 
prevents their extensive growth. Thus, this model al-
lows to estimate functional ecosystem effects, too.

CONCLUSIONS

Thanks to all the efforts made in the past decades, the 
application fields of Tetrahymena spp. in ecotoxicology 
have been widely extended. Their unique biological and 
ecological advantages allow them to be used as sensitive 
and easy-to-handle “toxic action indicators” at the bio-
chemical, organismal and population levels, as an impor-
tant part of a microcosm simulating a microbial food web, 
and to assess the direct/indirect effects of chemicals at the 
community level. Moreover, due to the advancements in 
cellular and molecular biology, more and more bioassays 
based on behavioral alteration or new molecular bio-
markers have been introduced. These assays, not only to 
elucidate toxic mode of actions, but also to shed light on 
the mechanisms at the molecular and individual levels. 
Concurrently, some previous studies have further shown 
their potential being adapted for the future ecotoxicologi-
cal research, which focus on complex samples and long-
term effects, more closely reflecting ecological effects. 
Hence, Tetrahymena spp. have been, and will be, one of 
the key representatives for integrated multi-level (eco) 
toxicological research. However, the recently developed 
biotests and biosensors still have to be standardized, vali-
dated and implemented for practical risk assessment and 
multi-level tests should be developed by simultaneous 
assessment of biomarkers from different biological orga-
nization levels. In this sense we agree with Lukacinova 
et al. (2007) that Tetrahymena spp. tests might replace 
mammal tests in toxicology and fish/fish cell line tests 
in ecotoxicology in the future, thus concordant with the 
European 3 R strategy in eco/toxicity testing approaches.
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