10 research outputs found

    Particularities of spatial kinetics of hybrid thorium reactor installation containing the long neutron source based on magnetic trap

    Get PDF
    In this work, we study the features of the spatial kinetics of installation as a hybrid thorium reactor with an elongated plasma neutron source based on a magnetic trap. The active zone of the installation under study consists of an assembly of hexagonal fuel blocks of a unified design and a long solenoid with a high-temperature plasma column passing through the axial region of the core. Combining engineering expertise in creating nuclear reactors with a physics-technical potential for obtaining high-temperature plasma in a long magnetic trap we ensure the solution of the multidisciplinary problem posed. These studies are of undoubted practical interest, since they are necessary to substantiate the safety of operation of such hybrid systems. The research results will allow optimizing the active zone of the hybrid system with leveling the resulting offset radial and axial energy release distributions. Results of our study will be the basis for the development of new and improvement of existing methods of criticality control in related systems such as "pulsed neutron source - subcritical fuel assembly"

    Neutron data field in a fission reactor core with fusion neutron source at pulse-periodic operation

    Get PDF
    Results are presented on the distinctive features of the energy release dynamics in the hybrid thorium reactor operating in combination with the neutron source based on the extended magnetic mirror trap. In the reactor core configuration under study, the high-temperature plasma column is formed in a pulse-periodic mode. At a certain duty cycle (pulse ratio) of the plasma column formation, it can be expected that the fission "wave" will be formed diverging from the axial region of the system and propagating in the radial direction in the fuel assembly (blanket). Under such conditions, in order to correct the resulting offset of the energy release distribution, it is necessary to optimize the fuel composition of the assembly in order to obtain the most appropriate radial distributions of physical parameters. The studies are carried out on the basis of the full-scale model of the reactor core, in which the axial region is modified: the extended magnetic mirror trap operating as a source of fusion neutrons is installed in the reactor core axial region

    THE BAND MICROSECOND ELECTRON BEAMS WITH ENERGY RESERVE OF THOUSANDS OF KILOJOULES (GENERATION, TRANSPORTATION AND CONVERSION FOR HEATING OF PLASMA)

    No full text
    The object of investigation: the high-current REB with band form of the cross section. The work is aimed at studying the generation, transportation and conversion of the band REB for attaining the energy reserve, approaching to 0,5 MJ. Solved has been the problem about the angular divergence of the band beams, its balance and stability in the slot channels; the methods of the computer design of the angular and the power scatters of electrons by the results of measurements have been developed. For the first time, the laws of generation, transportation and conversion of the high-curent band REB have been developed, the new methods intended for measuring the power and angular scatters of electrons have been createdAvailable from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    Fusion-fission hybrid reactor facility: neutronic research

    No full text
    The authors investigate the neutronic characteristics of the operating mode of a hybrid nuclear-thermonuclear reactor. The facility under study consists of a modified core of a high-temperature gas-cooled thorium reactor and an extended plasma neutron source penetrating the near-axial region of the core. The proposed facility has a generated power that is convenient for the regional level (60–100 MW), acceptable geometric dimensions and a low level of radioactive waste. The paper demonstrates optimization neutronic studies, the purpose of which is to level the resulting offsets of the radial energy release field, which are formed within the fuel part of the blanket during long-term operation and due to the pulsed operation of the plasma D-T neutron source. The calculations were performed using both previously developed models and the SERPENT 2.1.31 precision program code based on the Monte Carlo method. In the simulation, we used pointwise evaluated nuclear data converted from the ENDF-B/VII.1 library, as well as additional data for neutron scattering in graphite from ENDF-B/VII.0, based on the S (α, β) formalism

    Fusion-fission hybrid reactor facility: power profiling

    No full text
    The current state of research in the field of nuclear and thermonuclear power aimed at creating power generation plants makes it possible to predict the further development of modern power industry in the direction hybrid reactor power plants. Such hybrid systems include a tokamak with reactor technologies, worked out in detail in Russia, and systems with an additional source of neutrons. Power generation plants using tokamaks and accelerators with the required level of proton energy will be of exceptionally large size and power, which will postpone their construction on an industrial scale to the distant future. The ongoing research is aimed at the development of small generation and has the prospect of entering the field of energy use in a shorter period. The hybrid reactor facility under study consists of an axisymmetric assembly of fuel blocks of a high-temperature gas-cooled reactor and a linear plasma source of additional neutrons. The paper demonstrates the results of optimization plasma-physical, thermophysical and gas-dynamic studies, the purpose of which is to level the distortions of the power density field, which are formed in the volume of the multiplicating part of the facility due to the pulsed operation of the plasma source of D-T-neutrons. The studies on increasing the “brightness” of the source and modeling its operating modes were carried out using the DOL and PRIZMA programs. The thermophysical optimization and gas-dynamic calculations were performed using the verified SERPENT and FloEFD software codes. The calculations were made on a high-performance cluster of the Tomsk Polytechnic University
    corecore