14 research outputs found

    Beneficial Renal and Pancreatic Phenotypes in a Mouse Deficient in FXYD2 Regulatory Subunit of Na,K-ATPase

    Get PDF
    The fundamental role of Na,K-ATPase in eukaryotic cells calls for complex and efficient regulation of its activity. Besides alterations in gene expression and trafficking, kinetic properties of the pump are modulated by reversible association with single span membrane proteins, the FXYDs. Seven members of the family are expressed in a tissue-specific manner, affecting pump kinetics in all possible permutations. This mini-review focuses on functional properties of FXYD2 studied in transfected cells, and on noteworthy and unexpected phenotypes discovered in a Fxyd2-/- mouse. FXYD2, the gamma subunit, reduces activity of Na,K-ATPase either by decreasing affinity for Na+, or reducing Vmax. FXYD2 mRNA splicing and editing provide another layer for regulation of Na,K-ATPase. In kidney of knockouts, there was elevated activity for Na,K-ATPase and for NCC and NKCC2 apical sodium transporters. That should lead to sodium retention and hypertension, however, the mice were in sodium balance and normotensive. Adult Fxyd2-/- mice also exhibited a mild pancreatic phenotype with enhanced glucose tolerance, elevation of circulating insulin, but no insulin resistance. There was an increase in beta cell proliferation and beta cell mass that correlated with activation of the PI3K-Akt pathway. The Fxyd2-/- mice are thus in a highly desirable state: the animals are resistant to Na+ retention, and showed improved glucose control, i.e. they display favorable metabolic adaptations to protect against development of salt-sensitive hypertension and diabetes. Investigation of the mechanisms of these adaptations in the mouse has the potential to unveil a novel therapeutic FXYD2-dependent strategy

    Vasopressin induced trafficking of FXYD1 in wild type IMCD <i>in vivo</i>.

    No full text
    <p>Wild type mice were injected with dDAVP (1 μg/kg) and sacrificed at 0 time (a-c), 4 hours (d-f), and 16 hours (g-i) post-injection. Fixed kidneys were sectioned, and slides were stained with antibodies against AQP2 (a,d,g) and PLM-C1 antibodies against FXYD1 (b,e,h). dDAVP stimulated the trafficking of FXYD1 from an intracellular location towards apical membrane. Co-localization of FXYD1 and AQP2 at apical membrane is seen in yellow after 4 hours (f). This figure is representative of 3 independent experiments. Nuclei were labeled with TO-PRO-3. Bars, 10 μm.</p

    The daytime defect in urine concentration in Fxyd1<sup>-/-</sup> mice was compensated over 24 h.

    No full text
    <p>The daytime defect in urine concentration in Fxyd1<sup>-/-</sup> mice was compensated over 24 h.</p

    FXYD1 is implicated in urinary concentration.

    No full text
    <p>Box and whisker plot of the osmolality of daytime (afternoon) samples of male mouse WT and knockout (KO) urine at baseline and after water deprivation, showing a difference in baseline osmolality but the near-normal ability of the KO to concentrate its urine. The asterisks indicate a P value of <0.0001, 2-tailed Student’s <i>t</i>-test. When calculated as average ± SEM the results were as follows. WT control conditions, 2,019 ± 143, n = 20; KO control conditions 1,161 ± 123, n = 21; Student’s <i>t</i>-test, P < 0.0001. WT after 36 hours water deprivation, 4,224 ± 140, n = 8; KO water deprivation, 3,716 ± 383, n = 8; <i>t</i>-test, P = 0.26. Female mice were also tested in control conditions, and the results for baseline osmolality were WT, 2,169+/-92, n = 7; KO, 1,085+/-108, n = 7, <i>t</i>-test P < 0.001.</p

    AQP2 abundance was reduced in FXYD1 knockout mice.

    No full text
    <p>(A, B) <i>Fxyd1</i><sup>-/-</sup> mice had a lower abundance of AQP2 in inner medulla. Inner medulla from WT and KO mice was obtained as lysates and tested on blots with specific antibodies [representative blot in (A)]. Both core (c) and glycosylated (g) species of AQP2 were reduced in KO animals. (B) quantification of results of three experiments. (C, D) Blot quantification of the relative changes in inner medullary AQP2 levels after 2 hour treatment of mice with dDAVP, 3 experiments. Stimulation with dDAVP resulted in a similar increase of AQP2 recovered in pelleted crude membranes in both WT (C) and KO (D). Bars are ± S.E.M. and significance was evaluated by Student’s <i>t</i>-test.</p
    corecore