217 research outputs found

    Electron Correlations and Two-Photon States in Polycyclic Aromatic Hydrocarbon Molecules: A Peculiar Role of Geometry

    Full text link
    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene and circumcoronene, all possessing D6hD_{6h} point group symmetry versus ovalene with D2hD_{2h} symmetry, within the Pariser-Parr-Pople model of interacting π\pi-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D6hD_{6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D2hD_{2h} ovalene but not in those with D6hD_{6h} symmetry.Comment: 11 pages, 3 figures, 3 table

    An interoperability framework for security policy languages

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophySecurity policies are widely used across the IT industry in order to secure environments. Firewalls, routers, enterprise application or even operating systems like Windows and Unix are all using security policies to some extent in order to secure certain components. In order to automate enforcement of security policies, security policy languages have been introduced. Security policy languages that are classified as computer software, like many other programming languages have been revolutionised during the last decade. A number of security policy languages have been introduced in the industry in order to tackle a specific business requirements. Not to mention each of these security policy languages themselves evolved and enhanced during the last few years. Having said that, a quick research on security policy languages shows that the industry suffers from the lack of a framework for security policy languages. Such a framework would facilitate the management of security policies from an abstract point. In order to achieve that specific goal, the framework utilises an abstract security policy language that is independent of existing security policy languages yet capable of expressing policies written in those languages. Usage of interoperability framework for security policy languages as described above comes with major benefits that are categorised into two levels: short and long-term benefits. In short-term, industry and in particular multi-dimensional organisations that make use of multiple domains for different purposes would lower their security related costs by managing their security policies that are stretched across their environment and often managed locally. In the long term, usage of abstract security policy language that is independent of any existing security policy languages, gradually paves the way for standardising security policy languages. A goal that seems unreachable at this moment of time. Taking the above facts into account, the aim of this research is to introduce and develop a novel framework for security policy languages. Using such a framework would allow multi-dimensional organisations to use an abstract policy language to orchestrate all security policies from a single point, which could then be propagated across their environment. In addition, using such a framework would help security administrators to learn and use only one single, common abstract language to describe and model their environment(s)

    Theory of interfacial charge-transfer complex photophysics in π\pi-conjugated polymer-fullerene blends

    Full text link
    We present a theory of the electronic structure and photophysics of 1:1 blends of derivatives of polyparaphenylenevinylene and fullerenes. Within the same Coulomb-correlated Hamiltonian applied previously to interacting chains of single-component π\pi-conjugated polymers, we find an exciplex state that occurs below the polymer's optical exciton. Weak absorption from the ground state occurs to the exciplex. We explain transient photoinduced absorptions in the blend, observed for both above-gap and below-gap photoexcitations, within our theory. Photoinduced absorptions for above-gap photoexcitation are from the optical exciton as well as the exciplex, while for below-gap photoexcitation induced absorptions are from the exciplex alone. In neither case are free polarons generated in the time scale of the experiment. Importantly, the photophysics of films of single-component π\pi-conjugated polymers and blends can both be understood by extending Mulliken's theory of ground-state charge transfer to the case of excited-state charge transfer.Comment: 9 pages, 8 figure

    The Dynamical Cluster Approximation (DCA) versus the Cellular Dynamical Mean Field Theory (CDMFT) in strongly correlated electrons systems

    Full text link
    We are commenting on the article Phys. Rev. {\bf B 65}, 155112 (2002) by G. Biroli and G. Kotliar in which they make a comparison between two cluster techniques, the {\it Cellular Dynamical Mean Field Theory} (CDMFT) and the {\it Dynamical Cluster Approximation} (DCA). Based upon an incorrect implementation of the DCA technique in their work, they conclude that the CDMFT is a faster converging technique than the DCA. We present the correct DCA prescription for the particular model Hamiltonian studied in their article and conclude that the DCA, once implemented correctly, is a faster converging technique for the quantities averaged over the cluster. We also refer to their latest response to our comment where they argue that instead of averaging over the cluster, local observables should be calculated in the bulk of the cluster which indeed makes them converge much faster in the CDMFT than in the DCA. We however show that in their original work, the authors themselves use the cluster averaged quantities to draw their conclusions in favor of using the CDMFT over the DCA.Comment: Comment on Phys. Rev. B 65, 155112 (2002). 3 pages, 2 figure

    Subgap Two-Photon States in Polycyclic Aromatic Hydrocarbons: Evidence for Strong Electron Correlations

    Full text link
    Strong electron correlation effects in the photophysics of quasi-one-dimensional π\pi-conjugated organic systems such as polyenes, polyacetylenes, polydiacetylenes, etc., have been extensively studied. Far less is known on correlation effects in two-dimensional π\pi-conjugated systems. Here we present theoretical and experimental evidence for moderate repulsive electron-electron interactions in a number of finite polycyclic aromatic hydrocarbon molecules with D6hD_{6h} symmetry. We show that the excited state orderings in these molecules are reversed relative to that expected within one-electron and mean-field theories. Our results reflect similarities as well as differences in the role and magnitude of electron correlation effects in these two-dimensional molecules compared to those in polyenes.Comment: 11 pages, 5 figures, 2 table

    Ferromagnetic Spin Coupling as the Origin of 0.7 Anomaly in Quantum Point Contacts

    Full text link
    We study one-dimensional itinerant electron models with ferromagnetic coupling to investigate the origin of 0.7 anomaly in quantum point contacts. Linear conductance calculations from the quantum Monte Carlo technique for spin interactions of different spatial range suggest that 0.7(2e2/h)0.7(2e^{2}/h) anomaly results from a strong interaction of low-density conduction electrons to ferromagnetic fluctuations formed across the potential barrier. The conductance plateau appears due to the strong incoherent scattering at high temperature when the electron traversal time matches the time scale of dynamic ferromagnetic excitations.Comment: 5 pages, 4 figure
    corecore