

An Interoperability Framework For Security Policy
Languages

Amir Aryanpour

This is a digitised version of a dissertation submitted to the University of
Bedfordshire.

It is available to view only.

This item is subject to copyright.

An Interoperability Framework For Security Policy Languages

By

Amir Aryanpour

A thesis submitted to the University of Bedfordshire in partial fulfilment of the

requirements for the degree of Doctor of Philosophy

Submission date: 01-04-2015

Abstract

Security policies are widely used across the IT industry in order to secure envi-

ronments. Firewalls, routers, enterprise application or even operating systems like

Windows and Unix are all using security policies to some extent in order to secure

certain components.

In order to automate enforcement of security policies, security policy languages

have been introduced. Security policy languages that are classified as computer

software, like many other programming languages have been revolutionised during

the last decade. A number of security policy languages have been introduced in the

industry in order to tackle a specific business requirements. Not to mention each

of these security policy languages themselves evolved and enhanced during the last

few years.

Having said that, a quick research on security policy languages shows that the

industry suffers from the lack of a framework for security policy languages. Such

a framework would facilitate the management of security policies from an abstract

point. In order to achieve that specific goal, the framework utilises an abstract

security policy language that is independent of existing security policy languages

yet capable of expressing policies written in those languages.

Usage of interoperability framework for security policy languages as described

above comes with major benefits that are categorised into two levels: short and

long-term benefits. In short-term, industry and in particular multi-dimensional or-

ganisations that make use of multiple domains for different purposes would lower

their security related costs by managing their security policies that are stretched

across their environment and often managed locally. In the long term, usage of ab-

stract security policy language that is independent of any existing security policy

languages, gradually paves the way for standardising security policy languages. A

goal that seems unreachable at this moment of time.

Taking the above facts into account, the aim of this research is to introduce and

develop a novel framework for security policy languages. Using such a framework

i

would allow multi-dimensional organisations to use an abstract policy language to

orchestrate all security policies from a single point, which could then be propagated

across their environment. In addition, using such a framework would help secu-

rity administrators to learn and use only one single, common abstract language to

describe and model their environment(s).

ii

Contents

Abstract i

Acknowledgements ix

Declaration xi

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.2.1 Industry Research . 3

1.2.2 Industry Support . 4

1.2.3 Research Support . 5

1.2.4 Industry Sponsorship/Encouragement 5

1.3 Problem Statement . 6

1.4 Research Context . 9

1.4.1 Short-Term Benefits . 9

1.4.2 Long-Term Benefits . 11

iii

1.5 Thesis Statement (Aims and Objectives) 11

1.5.1 Scope and Limitations . 13

1.5.2 Research Methodologies 14

1.6 Research Contribution . 15

1.7 Related Publications . 16

1.7.1 Conferences . 16

1.7.2 Books . 16

1.8 Thesis Outlines . 16

2 Related Work and Background 19

2.1 Security Policy . 19

2.2 Security Policy Models . 22

2.3 Security Policy Languages . 23

2.4 Related Works . 28

2.4.1 A Framework for Multi-Policy Environment 28

2.4.2 Representing OWL Based Security Policies 29

2.4.3 Identified Areas for Improvements 30

2.5 Summary . 34

2.5.1 Chapter Summary . 34

2.5.2 Research Contributions of the Chapter 34

3 The Framework Overview and Design Challenges 35

3.1 The Requirements of the Framework 35

3.2 Architectural Overview of the Framework 39

iv

3.3 Overview of the Abstract Security Policy Language (ASPL) 41

3.4 The Next Steps . 43

3.5 Summary . 45

3.5.1 Chapter Summary . 45

3.5.2 Research Contributions of the Chapter 47

4 Security Policy Languages 48

4.1 Comparison of Security Policy Languages 48

4.1.1 Requirement-Based Comparison 49

4.1.2 Scenario-Based Comparison 51

4.1.3 Criteria-Based Comparison 53

4.1.4 More Comparison of Security Policy Languages 55

4.2 Requirements for Choosing Security Policy Languages 56

4.2.1 Blending All the Methods Together 57

4.3 Overview of the Selected Policy Languages 59

4.3.1 XACML . 59

4.3.2 Ponder . 62

4.3.3 Protune . 63

4.4 Summary . 66

4.4.1 Chapter Summary . 66

4.4.2 Research Contributions of the Chapter 66

5 A New Algebra for Security Policy Languages 68

5.1 Algebra for Security Policy Languages 68

v

5.1.1 An Algebra for Composing Access Control Policies 70

5.1.2 A Propositional Policy Algebra for Access Control 72

5.2 An Algebra for Fine-Grained Integration of Security Policies 72

5.2.1 Policy Semantics . 73

5.2.2 Policy Constants . 75

5.2.3 Operators Applied to Policies 75

5.2.4 Expansion of Algebra . 78

5.2.5 Algebra Expressions . 85

5.2.6 Algebra Completeness . 86

5.3 Summary . 93

5.3.1 Chapter Summary . 93

5.3.2 Research Contributions of the Chapter 94

6 Domain Specific Language 96

6.1 How to Start the Design Phase . 96

6.2 Domain Specific Language . 98

6.2.1 Domain Specific Language (DSL) Stakeholders 100

6.2.2 Boundaries of DSL . 101

6.2.3 Requirement for DSLs . 101

6.2.4 Advantages of DSL . 103

6.2.5 Disadvantages of DSL . 105

6.3 DLS Implementation Phase and Patterns 106

6.3.1 Decision Phase . 106

vi

6.3.2 Analysis Phase . 109

6.3.3 Design Phase . 111

6.3.4 Implementation Phase . 115

6.3.5 Exploring Embedding Pattern 120

6.3.6 Internal or External DSL 126

6.4 External DSL Implementation . 127

6.4.1 Anatomy of External DSL 127

6.4.2 External DSL Implementation Patterns in Details 129

6.5 Choosing a Programming Language 132

6.6 Summary . 136

6.6.1 Chapter Summary . 136

6.6.2 Research Contributions of the Chapter 136

7 Implementation of the Framework 138

7.1 Software Methodology . 138

7.2 System Requirements . 140

7.3 High Level Design . 143

7.3.1 High Level Architecture of the Framework 143

7.3.2 HLA Components . 149

7.4 Low Level Design . 151

7.4.1 Design Review Round 1 153

7.4.2 Capturing Feedback . 154

7.5 Restructure of the Design . 158

vii

7.5.1 Parser Combinators . 159

7.6 Detailed Design . 163

7.7 Enhancing the Framework . 167

7.7.1 Limitation of Access to the System 168

7.7.2 Increasing the Accuracy of the Framework by Reasoning . . 170

7.8 Testing and Evaluation . 170

7.8.1 Evaluation the Framework Against Software Requirements . 171

7.8.2 Evaluation the Framework Against Acceptance Criteria . . . 173

7.8.3 Evaluation of the Framework by Capturing Experts’ Opinion 181

7.9 Analysis of The Framework . 181

7.10 Summary . 185

7.10.1 Chapter Summary . 185

7.10.2 Research Contributions of the Chapter 185

8 Conclusion and Future work 187

8.1 Conclusion . 187

8.2 Further Work . 192

8.2.1 Expansion . 192

8.2.2 Security . 193

8.3 The Future of the Framework . 194

8.3.1 Microservices . 194

Appendices 196

A List of Open Source Software Used 196

viii

B Policy Language Comparison . 197

C JVM Language Comparison . 199

D Requirement Gathering Questioner 201

E Survey Questioner . 203

References 203

ix

Acknowledgement

First and foremost, I would like to express my gratitude to my first supervi-

sor Prof. Yan. His encouragement, patient guidance and indeed critical feedback

shaped the entire research.

I would also like to offer my deepest appreciation to my second and third su-

pervisors Prof. Parkash and Dr. Aydin who unconditionally supported me at crucial

stages of my PhD study. Without their help and support, I could not have finished

this study, without a doubt.

I am grateful to Capgemini UK, for granting me a research sponsorship. In

particular, I owe a great debt to my managers and colleagues including Mr. Scott

Davies, Mr. Andrew Harmel-law and Mr. John Arnold, who helped me throughout

this research. Their invaluable feedback, discussions and support encouraged me to

overcome majority of the challenges that I had to face.

Last but not the least, I would like to thank my family for their continuing moral

and emotional support and being patient with me throughout the last few years.

x

Declaration

I declare that the work described in this thesis is my own unaided work for

the degree of Doctor of Philosophy at the University of Bedfordshire. It has not

been submitted for any degree or in any other University or college of advanced

education.

This thesis has been written by me and produced using LATEX.

Name of candidate: Amir Aryanpour Signature:

Date: 01-04-2015

xi

List of Figures

1.1 Overview of Gluu, a Framework for Identity Access Management

[21] . 4

1.2 Overview of Interoperability Framework for Security Policy Lan-

guages . 7

1.3 A Typical Secure Distributed Environment 10

2.1 Layer of Protection on an Enterprise Application 20

2.2 High-Level View of Layers of Protection 22

2.3 An Architectural Model of Security Policy Server 24

3.1 Overview of the Framework . 38

3.2 Percentage of Requested Requirements (NFR) Asked by Participants 39

3.3 Architectural Overview of the Framework 41

3.4 The Road-map of this Research . 46

6.1 How to Choose a DSL Implementation Pattern 120

6.2 Architectural Overview of External DSL 128

6.3 Boundaries of Semantic Model in External DSL 129

6.4 Schematic Diagram of Profiling Data Generation [117] 134

xii

7.1 The Proposed HLA of the Framework 144

7.2 The Proposed Low Level Architecture of the Framework 152

7.3 A Snapshot of Xtext (Eclipse) Environment 156

7.4 Percentage of Complaints/Issues Grouped by Framework Require-

ments . 158

7.5 The Restructured Architecture of the Framework 163

7.6 The Enhanced Architecture of the Framework 171

7.7 The Proposed Testing Procedure for the Framework 174

7.8 Example of Issues Found for a New Feature per Sprint 183

7.9 Required Changes on Semantic Model per Feature 184

1 Policy Languages Comparison . 198

2 JVM Languages Comparison . 200

3 Requirement Gathering Questioner 202

4 Survey Questioner . 204

xiii

List of Tables

4.1 Comparison of Security Policy Languages [76] 53

5.1 Policy Combination Matrix for Addition Operator (+) 76

5.2 Policy Combination Matrix for Intersection Operator (&) 76

5.3 Policy Combination Matrix for Negation Operator (¬) 77

5.4 Policy Combination Matrix for Subtraction Operator (-) 77

5.5 Policy Combination Matrix for Expression (P1 +P2) 86

5.6 Policy Combination Matrix for Expression (P2 +P1) 86

5.7 A Combination Matrix Example 89

5.8 Layout of Expressions Which Result {Y,Y} 89

5.9 A Generic Combination Matrix Example 90

5.10 How to Use D&C to Find Integrated Policy Expressions 91

5.11 Possible Expression for Individual Cells Which Results {Y,Y} . . . 92

xiv

xv

Chapter 1

Introduction

This introductory chapter presents:

• The research motivation,

• The problems statement,

• The research context,

• The thesis statement (Aims and Objectives),

• The research scope and constraints,

• The thesis contribution,

• Related publications,

• The thesis outline.

1.1 Background

There is no doubt that computer networking has been revolutionised during the last

decade. Computer networks, including the internet, are expanding at a rapid pace

that make it almost impossible to predict what will be introduced and added to this

1

1.1. Background

phenomenon in the future. Less than a decade ago, it would have been inconceivable

that in the near future a user would be able to browse networks using a mobile

phone whilst sitting in a car or that people would seamlessly, but securely, store

their information on the internet without knowing where their information had been

physically stored (i.e. the cloud). The expansion appears to be multi-dimensional.

However, irrespective of the type and directions of the expansion, people always

have had one concern in common; the security of their networks.

Although the expansion of networking is fascinating, there are a number of sce-

narios in which network users would typically decide to restrict access to and from

their networks by other users. For example, when backing up information such as

pictures on a cloud based storage, one might consider who can access that infor-

mation and under what circumstances. Another example is restriction of a personal

network router to block delivery of age-restricted content to the home network in

order to protect the safety of children. In the above-mentioned examples, and in

many other similar scenarios, one is effectively thinking in the same way that a

security architect in a multi-domain organisation thinks in regard to restricting ac-

cess to and from network resources. Whilst on a router, for instance, a few clicks

on a pre-defined admin-page could achieve the goal of restricting access to certain

websites, the same may not be as easily achievable in multi-domain organisations.

Generally speaking, that is why security policies have been introduced.

Very similar to programming languages that facilitate orchestration of a series

of actions to achieve a goal by programmers, security policy languages have been

introduced to allow coders or rather security administrators, to define their goals

to protect a specific domain by taking certain actions in a specific order. Many

access control models and policy languages have been proposed in order to address

the above mentioned concern. These languages, which have evolved during the

past decade, usually come with different specifications and aim to tackle different

business requirements. However, irrespective of their type and specification, all

security policy languages, from a single Role Based Access Control (RBAC) to a

highly sophisticated policy language that is capable of negotiating over the network,

2

1.2. Motivation

with their own advantages and disadvantages, have one aim in common, that is to

secure resources.

As with programming languages, it is not easy to distinguish the advantages of

one specific security policy language over another. However, unlike programming

languages that are used to code an unlimited number of scenarios, the majority of

scenarios covered by security policy languages can usually be modelled and de-

scribed at an abstract level. That summation for access request is simply stated as:

’who can access what, under which circumstances?’

1.2 Motivation

The motivation behind this research can be divided into different categories that are

described in the sections below:

1.2.1 Industry Research

Policy-based access control systems are now well established. One way or another,

different devices, applications, system users etc. are all restricted by these security

policies. The management of these security policies across a multi-domain envi-

ronment is a challenging task that would require tools/frameworks to assist system

security administrators to achieve their goals.

There are similar frameworks provided by different vendors to cover differ-

ent aspects of enterprises system securities like Security Authentication Language.

Gluu [21], that provides the industry with a framework for identity and access man-

agement control utilising a single point of management, can be given as an exam-

ple. However, industry suffers from lack of such tools for security policy languages,

hence, this research is focused on security policy languages and aims to fill-in the

identified gaps within the industry.

In other words, very similar to other frameworks such as Gluu [21], this re-

3

1.2. Motivation

Figure 1.1: Overview of Gluu, a Framework for Identity Access Management [21]

search’s goal is to provide security policy users with an abstract standard security

policy language, that can be translated to other specific security policy languages.

Indeed, in order to achieve this, an Interoperability Framework for Security Policy

Languages that understands the abstract language and is capable of translating it to

specific security policy languages is needed.

1.2.2 Industry Support

In addition to the above, in order to justify the present research, it is necessary to

focus on two different sets of facts: on one hand, in todays economy, whilst corpo-

rations seek to control costs yet drive productivity, the cost of acquiring and main-

taining a company’s software is closely scrutinised and controlled. IT departments

are under constant pressure to deliver more services in a short span of time with

ever decreasing budgets. Hence, IT departments are willing to choose and invest in

technologies that provide them with more business values at a lower cost.

On the other hand, the high demand of distributed computing and its multi-

dimensional expansion necessitates the increase of security policies and in turn,

4

1.2. Motivation

security policy language usages in the coming years. As stated above, these policy

languages come with different formalisms, specifications, advantages and disadvan-

tages. Yet, while too many of them may be available within the industry, it seems

that the usability of these languages cannot easily be challenged. Having said that,

and as mentioned before, the majority of the scenarios covered by these languages

can be modelled at an abstract level.

To summarise, on one hand, there are a wide range of security policy languages

available and needed within the industry, while on the other hand, IT departments

are under pressure to control their costs and hence, they are willing to invest in tech-

nologies that helps them to achieve such a goal. A combination of these two could

justify this research intently that provides the industry with one generic security

policy language that helps the industry to manage heterogeneous security policies

from single point of management. As we will see in the coming sections, the frame-

work that is provided by this research will help multi-dimensional organisations to

significantly reduce their costs.

1.2.3 Research Support

As we will review them in great details in the Chapter 2, it was also noted that few

other researches and academic projects aimed to tackle the very same issue, during

last few years. Inspired by these contributions, this research aims to improve their

work and provide other researchers with a more advanced framework for security

policy languages.

1.2.4 Industry Sponsorship/Encouragement

Above all, a series of informal interviews were conducted to obtain more detailed

information in the field of this research. A series of highly professional experts have

been selected to obtain their invaluable insights on the research. In addition to above

it has also been decided to have a mix of expertise from different backgrounds,

5

1.3. Problem Statement

with the hope to cover different aspects of the framework. These expert views and

guidance paved the way to start this research. A list of these experts who constantly

shaped the IT industry is as follows:

• Professor of Security Engineering at the Computer Laboratory of Cambridge

University.

• Chief Security Architect at Capgemini UK.

• Manging Software Architect at Capgemini UK.

• Senior Security Consultant at Capgemini UK.

• Senior Security Consultant at IBM UK.

These individuals are referred to as experts throughout the research and will

reappear in Chapter 3, The framework Overview and Design challenges and in

Chapter 7 Implementation of the Framework.

1.3 Problem Statement

Considering the range of security policy languages that are currently available to

choose from (more than 20 security policy languages recognised by W3C [24]), in-

evitably, multidimensional organisations have to use a collection of these languages

in their environment. Taking the fact into account that these languages are often

used in a single domain, a standard security policy language, in addition to a secu-

rity policy language framework, is needed to help security architects and security

administrators to manage and maintain their secure domains from a single point of

administration.

Lack of such a framework as illustrated in Figure 1.2, which has already been

noted by other researchers in the past and as a result of that, afew studies and re-

searches have already been carried out for the development of a multipurpose secu-

rity policy language such as - SecPAL [44]. These researches, however, aimed to

6

1.3. Problem Statement

��������	
���

��������	

��������	�����	

��������

�������

�	
����

�������

�	
����

�������

�	
����

�����������	����

���	����

�������������	����

Figure 1.2: Overview of Interoperability Framework for Security Policy Languages

provide a completely new and enhanced security policy language by analysing and

improving previous security policy languages. Utilising a completely new security

policy language can be considered by new projects within the industry, but this ap-

proach is not always welcomed with regards to legacy applications, especially in a

secured domain.

Taking the above fact into account, the interoperability framework for security

policy language should not only force a legacy system to change or modify the

underlying security infrastructure, but it should also use that to a great extent. The

usage of this framework should help security experts to achieve their goals more

easily and should not impose more constraints on their domains.

Fair and challenging questions can be presented as: Why is such an abstract

language needed? Do policy language users want a standard at all? Can none of

the existing languages be adapted more generally?

In order to answer these questions, the following few facts must be taken into

account:

1. Security policy languages have evolved over the last decade and the process

is still ongoing.

2. Security policy languages are popular but they are not a compulsory com-

7

1.3. Problem Statement

ponent of every infrastructure, hence, they have their own distinctive lists of

users.

3. A handful of well-known organisations that have already implemented their

security infrastructures are using them to the greatest possible extent. Assum-

ing the infrastructure works as expected and is secure enough, there would be

no motivation for the client to change the infrastructure.

Now considering all these facts, these questions can be answered as follows:

Q: Do policy language users want a standard at all ?

A: Probably not at the moment, as the usage of security policy languages is lim-

ited to certain organisations and relatively large companies. However, researchers

need to be able to predict the demand of predictable tools, technologies, products

etc. and to standardise them in order to help both future researchers and industry.

Security policy languages can be one of those tools. At the moment, security policy

languages come with no unique industry-wide standard, but they do have their own

demands in the security arena.

If a standard for security policy languages that provides specific advantages to

its users would be desirable in the future, the development of that standard should

begin in the present day to encourage both new and existing users. Encouragement

of new users could be considered less challenging compared to the existing users. It

is believed that by using the framework, even existing users of security policy lan-

guages would be able to benefit from the security policy standard without changing

their security infrastructure.

Q: Can none of the existing languages be adapted more generally?

A: Generic and academic security policy languages could be considered for such

an approach. However, it must be borne in mind that the framework, in addition

to its advantages that have already been described has to achieve a very specific

goal: to provide future AND current policy language users with an abstract standard

policy language.

8

1.4. Research Context

Using an existing policy language and using it more generally would probably

work for new users. However, that would not be acceptable for existing security

policy language users.

1.4 Research Context

Protecting networked resources came to life at the very same time when com-

puter networking was introduced. Many access control models and security policy

languages have been proposed in order to address the above-mentioned concerns.

These languages, which have undergone a revolution during the last decade, usually

come with different specifications aiming to tackle different business requirements.

However, these policy languages have often been designed independently and

are not interoperable. This lack of interoperability of security policy languages on a

distributed network, where different domains use different policy languages, affects

the main benefit of policy-based security management the enabling of resources

and services be controlled and managed at a high-level regardless of the adopted

under-lying policy language.

This research intends to provide security policy language users with a frame-

work to make them interchangeable. The industry would benefit from the usage of

such a framework as outlined below:

1.4.1 Short-Term Benefits

Security policy languages are often used in multidimensional organisations that

have different requirements for different parts of their networks or so-called sub-

domains. These sub-domains often use heterogeneous policy languages because

different policy languages are designed and developed to address different business

requirements. Policy languages, like programming languages, are typically not easy

to learn and understand for occasional users. Thus, the use of different policy lan-

9

1.4. Research Context

Figure 1.3: A Typical Secure Distributed Environment

guages in a multidimensional organisation imposes the need for security experts,

who can code security policies in those security policy languages. In addition, the

sub-domains of multi-dimensional organisations are often managed locally. This,

in turn, implies that the management of these security domains from a single point

is not an easy task to achieve.

Figure 1.3, which has been presented for illustration purposes, shows a typical

distributed network that utilises heterogeneous security policy languages across dif-

ferent sub-domains. In such an environment, the management of all sub-domains

at an abstract level is challenging if not impossible, unless an abstract management

policy framework to control the environment from a single point is introduced.

Using such a framework would allow multidimensional organisations to use

an abstract security policy language to orchestrate all the security scenarios at an

abstract level and from a single point, that can then be propagated across the envi-

ronment. In addition, using such a framework would help security administrators

10

1.5. Thesis Statement (Aims and Objectives)

to learn and use a single and common abstract language to describe and model their

environment(s).

1.4.2 Long-Term Benefits

Rapid expansion of computer networks, necessitated the introduction of a set of dif-

ferent security policy languages with different formalisms and models to the market

[24]. Taking the mentioned facts into account, it can be predictable that the future

expansion of computer networks and their requirements will demand even more

new security policy languages to be introduced. As a result, in the near future, there

will be too many policy languages without any intersection and commonality that

are all needed and required within the industry.

Using the proposed framework will help security architects and security admin-

istrators by eliminating the requirement of learning how to code security policies

in different policy languages. The proposed framework, which understands the se-

curity domains, provides users with a much simpler language that maintains the

orthogonality of the security system. The standard security policy language that

works in conjunction with the framework for security policy language will gradu-

ally become more mature and indeed popular and hopefully will lead the industry

to use an abstract standard security policy language in future.

1.5 Thesis Statement (Aims and Objectives)

Aims

As stated in the previous section, security policies are often scattered over different

domains and environments on multidimensional organisations. These security poli-

cies come with their own models and domains of administration. Moreover, some

applications within these organisations often need to cross several of these security

domains. Such a task would be very difficult to accomplish when these policies are

11

1.5. Thesis Statement (Aims and Objectives)

scattered over the domains. Having the infrastructure of the above organisations

in mind, the primary aim of the present research is to provide an interoperability

framework for management and administration of heterogeneous security policy

languages from a single point, across such an organisation.

The way that users interact with the framework would be via an abstract security

policy language perhaps through a user interface. Hence, the secondary aim of

the research will be defined as to provide security experts with a human-readable

abstract and standard security policy language that is independent of underlying

security infrastructure.

Objectives

The research objectives can be categorised in two sections:

A) Theoretical Objectives:

The diversity of the security policy languages urges to shortlist a handful of

these languages, as candidate languages. Hence, the first set of objectives can

be defined as:

1. To investigate commonalities and differences of security policy languages

from different perspectives and categorising them accordingly.

2. To define the project-specific criteria for shortlisting security policy lan-

guages. The task will be executed following the review of security policy

languages (i.e. task 1).

A similar task also has to be performed against algebra for security policy

languages:

3. To provide formalism for the framework and evaluate it against security pol-

icy language candidates. The task will be executed following the literature

review of presented algebra for security policy languages.

12

1.5. Thesis Statement (Aims and Objectives)

B) Practical Objectives:

1. To design a framework for security policy languages using appropriate soft-

ware development methodologies.

2. To implement a Proof of Concept (PoC) using open source components ac-

cording to software development best practices.

3. To design, develop and enhance an abstract security policy language for the

framework.

4. To evaluate the framework in accordance with well-known test strategies.

1.5.1 Scope and Limitations

As has been mentioned in previous section, this research will provide a framework

for security policy languages. Although security policy language candidates will be

briefly reviewed, their technical details including infrastructure, architecture, for-

malisms and specifications will not be discussed in detail in this paper and indeed,

would be beyond the scope of this research. Existence of these security policy lan-

guages has been assumed in advance.

In addition, various open source software application and frameworks have been

used throughout the design and development of the framework. A complete list of

these components, including their versions used will be provided in Appendix A.

Any improvement or enhancement of these components by their vendors that be-

comes available after the version that was used which directly or indirectly impacts

the performance and/or behaviour of the proposed framework will be excluded from

this research and would be beyond the scope of this study.

Moreover, a great deal of attention has been given to the design and implemen-

tation of the system in accordance with best software development practice. Having

said that, the entire design, implementation and evaluation of the framework was

performed in laboratory strictly for academic purpose. As a result, the framework

should not be used in real world production environments without proper testing

13

1.5. Thesis Statement (Aims and Objectives)

and perhaps improvement.

1.5.2 Research Methodologies

Throughout this study the following research methodologies have been used:

I. Interview

A series of simple yet effective interviews were conducted before the research

commenced and throughout the research. The majority of interviewees were

well-known individuals within the Information Technology (IT) industry with

invaluable insights on the future of IT. The results of these interviews shaped

the structure of this research from the outset.

II. Literature Study

At an early stage of the research, it was decided to mathematically prove

whether transition/conversion/translation of security policies is doable. Log-

ically, the most appropriate way to translate many-to-many languages is to

translate them to and from an abstract language. Algebra was chosen as the

abstract language, or rather the framework, throughout this research. Hence,

a literature review of existing algebra for security policy languages was per-

formed.

In addition to that, it was necessary to categorise security policy languages.

Accordingly, a literature study of existing security policy languages was also

carried out.

III. Proof of Concept

Proof of concept, which is also known as prototyping, was used to implement

a limited version of the framework in order to evaluate its outcome and its

behaviour against real world scenarios. Proof of concept has also been used to

test the framework with real users.

14

1.6. Research Contribution

IV. Experiment

Real users have been asked to interact with the framework prototype and their

interactions with the system was observed and surveyed. Their suggestions

and comments have also been fed back to the system developers in an iter-

ative manner, in order to improve system performance, behaviour and user-

friendliness

V. Survey

In order to make the users’ feedback procedure easier and indeed more formal,

a simple but effective survey, with a combination of multiple-choices questions

and suggestion box, was designed and distributed to the users.

1.6 Research Contribution

The main contribution of this research, as appears from the title, is to implement an

interoperability framework for security policy languages. However, the following

can also be considered as contributions of this research:

1. A literature review of security policy languages is provided. It includes a com-

plete comparison of security policy languages backed up by up-to-date discus-

sions and references. In addition to that, it was shown how to define a completely

new set of requirements for a customised security policy language comparison.

2. A literature review of algebra for security policy languages and their character-

istics, formalisms and specifications is provided.

3. A new algebra for security policy languages is presented and evaluated against

real world scenarios.

4. A completely new definition for an abstract standard security policy language

is presented. As the abstract language evolves, it will improve the usability of

security policy languages.

15

1.7. Related Publications

1.7 Related Publications

1.7.1 Conferences

1. Amir Aryanpour, Song Y. Yan, Scott Davies, Andrew Harmel-law. Towards De-

sign an Interoperability Framework for Security Policy Languages. In Proceed-

ings of 12th International Conference on Security and Management(SAM12).

16-19 July 2012, Las Vegas, USA.

2. Amir Aryanpour, Edmond Parakash, Scott Davies, Andrew Harmel-law. An

Interoperability Framework for Security Policy Languages. In Proceedings of

14th International Conference on Security and Management (SAM14). 21-24

July 2014, Las Vegas, USA.

1.7.2 Books

As the result of a successful presentation at SAM14, the respectful representative

of the Elsevier Publication at the conference initiated a negotiation to transform the

outcome of this research to a book (booklet). The task is ongoing and continuous.

1.8 Thesis Outlines

In this thesis, the outline of the remaining chapters is as follows:

• Chapter 2: Related Work and Background

In this chapter, the history of security policies will be examined in detail,

including the history of security policy models and its relation to security

policy languages.

Related work and research in the same area as the present research will be

reviewed and areas for improvements highlighted.

16

1.8. Thesis Outlines

• Chapter 3: The Framework Overview and Design Challenges

Chapter 3, will outline the high level requirements of the framework. By

providing an architectural overview of the framework it will show how differ-

ent parts of the framework will be tied to each other. A structural overview

of the abstract security policy language will be provided in this chapter. Fi-

nally, readers will be provided with a road-map that the research has taken to

achieve its goals

• Chapter 4: Security Policy Languages

In chapter 4, the necessity for comparison of security policy languages in

detail will be discussed. A literature review of comparisons of security policy

languages will commence, which is leading the research to the requirements

for selecting a small number of security policy languages for the framework.

Applying those requirements to a list of available security policy languages

will truncate the list to a set of three policy languages. The chapter will be

finalised by an overview of each language in turn.

Chapter 5: A New Algebra for Security Policy Languages

This chapter will describe the usefulness of algebra for security policies with

a literature review of algebra made for security policy languages. The chapter

will continue by choosing an algebra for the proposed framework and a step-

by-step evaluation will be provided to challenge the algebra. Finally, it will

provide the way that the algebra can be expanded and proved to be complete.

Chapter 6: Domain-Specific Language

The main aim of the chapter is to justify the usage of domain-specific lan-

guages in the context of this research. That will be achieved by defining the

domain specific language, providing advantages, disadvantages and require-

ments of domain-specific language in detail. Then the chapter will traverse

across different stages of implementing a domain-specific language and map

that to the research. The chapter will also show how the research narrowed

down a number of programming languages to a chosen language.

17

1.8. Thesis Outlines

Chapter 7: Implementation of the Framework

Chapter 7 will show a step-by-step implementation of the framework. This

will be gained by choosing an appropriate software development methodol-

ogy for the framework, defining the framework requirements, providing a

high-level design of the framework and the iterating through the low-level

designs of the framework. The chapter will be concluded by evaluation of the

framework.

Chapter 8: Summary and Future Work

This chapter will summarise the contribution of the thesis and propose some

future research works.

18

Chapter 2

Related Work and Background

In this chapter, the research presents:

• The history of the security policies,

• The relation between security policy models and security policy languages,

• The related work and research,

• The research contributions of the chapter.

2.1 Security Policy

Generally, the term secure domain applies to an environment that is dependable in

the face of two different levels of threats, those being Internal and External threats.

Internal threats refer to those activities that are performed within the secure domain.

This level of threats is also referred to as Human Error or just Error in secure do-

main definitions. External threats, however, refer to those activities that are imposed

from outside the boundaries of the secure domain [116].

Taking the above definition into account, performing certain operations or ac-

tions is rigidly restricted within a secure domain in order to protect its addressable

resources against internal and external threats. Hence, performing those activities

19

2.1. Security Policy

within the boundaries of a secure domain cannot be authorised unless fulfilment of

their pre-requisite conditions is met, approved and validated by the system. The

document that describes these conditions and the way that they get validated or ap-

proved is called the Security Policy. As an example, withdrawal of funds from bank

accounts is strictly prohibited unless it has been approved by the account holder.

The document that describes how funds can be withdrawn from an individual’s

bank accounts, which perhaps describes that such an action requires the authorisa-

tion and approval of the account holder, is a security policy for that specific financial

institute.

To formally define security policies and their possible relation to security policy

languages, how a typical enterprise application or environment is secured should be

examined. Securing enterprise applications or the network of a multidimensional

organisation can be visualised as illustrated in Figure 2.1.

Figure 2.1: Layer of Protection on an Enterprise Application [40]

The security policy, which is located at the highest level of the diagram, usually

is a set of high-level documents (i.e. they do not pay attention to details of process)

which precisely states what rules should be in place in order to achieve reliable

protection. Usually, Security Officers are in charge of documenting security poli-

20

2.1. Security Policy

cies, which are driven by their understanding of threats, risks and the sensitivity of

the system they are to protect. Security officers are not required to know the exact

details of the content that they protect in the environment. For example, a secu-

rity officer may define how certain confidential documents can be viewed, without

knowing the content of those documents.

Mechanism is located at the lowest level. The main responsibility of the mecha-

nism is to deploy security policies across the system. Usually mechanism comprises

of computer hardware and software such as, the security management platform,

cryptographic primitives, etc.

The security policy and mechanism are connected through the Middleware,

which composes of business tasks that need to be performed in compliance with

the given high-level security policy that has been defined by the security officers.

Application developers are typically in charge of middleware [116].

The security policy is a set of high-level documents that states precisely what

goals the protection mechanisms are to achieve. It is driven by the understand-

ing of threats and in turn drives the present system design. Typical request access

statements in a policy describe which subjects (e.g. users or processes) may access

what objects (e.g. files or peripheral devices) under what circumstances. A security

policy may be part of a system specification and like the specification its primary

function is to communicate [40].

Security policies have a great deal of similarity to the business requirements of

a computerised system in describing how the different parts of an application are to

tie, interact or communicate with each other. In that regard, like computerised sys-

tem that are produced or developed using programming languages, security policies

also need to be coded in order to carry out their functions. Security policy languages

with different levels of functionalities and expressiveness are used to code different

security related scenarios.

In accordance with the above definitions, in a very high-level view and in the

context of this research, the interactions between security policy language and the

21

2.2. Security Policy Models

policy server, which are located at the middle and bottom level of the diagram given

above can be represented as Figure 2.2. A more detailed view of layers of protection

will be presented in the next section.

��������	�
��
���	

��������																		����������

��������	

�����

��������	

�����	

�����

���������

Figure 2.2: High-Level View of Layers of Protection

2.2 Security Policy Models

It would perhaps be beneficial to understand how security policies were introduced.

Historically, the first modern network security policy, like many other security as-

pects, came from a military background. In response to the US Air Force concerns

over the confidentiality of data in mainframe systems in 1973 [40], the first modern

security policy was introduced. The concern led researchers to devise a simple yet

influential model based on restricting information flow between labelled clearance

levels such as, Confidential and Top Secret. This model of security, which was later

called the Bell-LaPadula [46] was the forerunner for other models like Biba [29].

The second wave of security policy models came from well-established business

practices such as, accountancy and law firms. In 1987, the Clark-Wilson security

policy model [60] was introduced, which was an abstraction of the double entry

bookkeeping system that is used in accountancy firms and banks. Two years later

in 1989, the Chinese Wall model [57] was introduced, which targets concerns over

22

2.3. Security Policy Languages

the conflict of interest in business practices (e.g. accountancy and law firm) with

different partners serving different customers who are competing in the same fields

[116].

Recent attention on the World Wide Web has necessitated not one, but a se-

ries of new security policy models to be introduced to address different levels of

concern. This can be categorised as the third wave of security policy models ad-

dressing the security vulnerability of the associated applications that are used in

this medium. In order to respond to market demands, a set of these new models was

built from the ground up, enhancing and improving security models that already ex-

isted. For instance, RBAC was introduced by Ferraiolo and R. Kuhn in 1992 [82]. It

is also known as Access Control List (ACL) and is widely used nowadays, based on

a model that was introduced in 1972 by Graham-Denning [95]. The model was later

improved by Harrison, Russo and Ullman in 1976 for operating system protection

[97].

2.3 Security Policy Languages

To present a concrete policy especially suited for its automated enforcement, a lan-

guage representation is needed. As has been mentioned above, security policy lan-

guages require an environment in which to function. In addition to security policy

languages, there are other components that need to closely interact and co-operate

with each other in order to ensure the security of a domain. Often, the combination

of all these components that interact and co-operate together is called the Security

Policy Server. There exists several security policy languages that are closely cou-

pled with the security mechanisms that enforce security policies in a domain.

Perhaps visualisation of these components of security policy servers would be

a good starting point. However, as it has already been noted, a variety of security

policy languages (and security policy servers) exist, each of which comes with dif-

ferent levels of functionalities, modules, components and indeed their own methods

of policy enforcement. As a result, it is almost impossible to provide a unique archi-

23

2.3. Security Policy Languages

tectural model of a security policy server that precisely illustrates the way that their

components interact with their environment. Having said that, Figure 2.3 has been

presented for illustration purposes in order to have a common vocabulary through-

out this document.

Figure 2.3: An Architectural Model of Security Policy Server [23]

In the picture provided above, the specified functional components are as fol-

lows:

• Policy Decision Point (PDP) is a system entity that evaluates applicable pol-

icy and provides an authorisation decision. This term corresponds to Access

Decision Function (ADF) in ISO10181-3 [104]. For trust domain requests,

PDP evaluates which trust domain should be assigned to. For access requests,

PDP evaluates whether or not a device can be accessed by requester based on

the current policy.

• Policy Enforcement Point (PEP) is a system entity that performs access

24

2.3. Security Policy Languages

control by making decision requests and enforcing authorisation decisions.

This term corresponds to Access Enforcement Function (AEF) in ISO10181-

3 [104]. For trust domain requests, PEP assigns a trust domain to a particular

web application; for access requests, PEP allows or prevents access to device

[23].

• Policy Information Point (PIP) is the system entity that acts as a source of

attribute values. PIP gathers information that is used by the PDP to evalu-

ate a trust domain or an access control request. For trust domain requests,

it collects the subject attributes (for example, how the web application was

identified and its associated security attributes), whereas, for access requests,

it collects resource attributes (i.e. which device is being requested and using

which parameters) and environment attributes (i.e. status of the device) [23].

• Policy Administration Point (PAP) is the authority that defines the policy.

It could be a network operator, a terminal manufacturer, a web runtime de-

veloper, an enterprise or a user at runtime. Policies can be provided by the

PAP in different ways, for instance using a pre-loaded file or data structure or

a remote management mechanism. The research interoperability framework

will be connected to PAP.

• Subject is an actor that requires access to resources. Examples of subjects

are: websites and widgets. Subject is an entity that may attempt security-

relevant actions and corresponds to a single identity.

• Subject Attribute, Every subject is associated with a set of attributes. Sub-

ject attributes allow the identification of the requester that is attempting access

to resources capabilities. The identified requester is then assigned a trust do-

main according to the appropriate trust policy (for trust domain requests of

course). Subject attributes include specific attributes that represent the iden-

tity of the requester attempting access to a resource. As an example, validity

of a requester can be examined by the URI for the requester e.g. widgets and

the URL for websites (in case of web applications) [23].

25

2.3. Security Policy Languages

• Resource is the entity(ies) that subjects may request access to. A document,

a specific page in a website, a printer, a firewall all these can be presented as

resources to the infrastructure.

• Resource Attribute Every resource is associated with a set of attributes. Re-

source attributes include an identifier. Other attributes may be associated with

a resource and these can include specific parameters that are specified as a part

of the request when attempting access. Resource attributes serve as an input

to access control policies [23].

• Environment is a set of attributes that are relevant to an authorisation deci-

sion and are independent of a particular subject, resource or action.

• Environment Attributes are a collection of environment status and/or con-

text attributes that may be relevant to the circumstances of a resource access

attempt, but are not directly associated with either the subject or resource. For

example, environment attributes can include terminal charging, network con-

nection status, etc. Environment attributes serve as an input of access control

policies. Attributes of the environment capture contextual information relat-

ing to the device or any other circumstances of the access attempt [23].

Taking these definitions into account, the model operates by the steps as de-

scribed below:

1. PAP writes policies and policy sets and makes them available to the PDP.

These policies or policy sets represent the complete policy for a specified

target.

2. The access requester sends a request for access to the PEP.

3. The PEP sends the request for access to the context handler in its native re-

quest format optionally including attributes of the subjects, resource, action

and environment.

4. The context handler constructs a request context and sends it to the PDP.

26

2.3. Security Policy Languages

5. The PDP requests any additional subject, resource, action and environment

attributes from the context handler.

6. The context handler requests the attributes from a PIP.

7. The PIP obtains the requested attributes.

8. The PIP returns the requested attributes to the context handler.

9. Optionally, the context handler includes the resource in the context.

10. The context handler sends the requested attributes and (optionally) the re-

source to the PDP.

11. The PDP evaluates the policy.

12. The PDP returns the response context (including the authorisation decision)

to the context handler.

13. The context handler translates the response context to the native response

format of the PEP. The context handler returns the response to the PEP.

14. The PEP fulfils the obligations (if any).

15. If access is permitted, then the PEP permits access (or trusts the peer in case

of trust negotiation) to the resource; otherwise, it denies the request [23].

It would be beneficial to look at this research contribution and its impact on the

above architecture whilst examining the infrastructure of security policy languages.

The proposed framework of this research only focuses on the policy administration

point. This is the point at which security administrators write the security policies

using different languages. The proposed framework connects to the PAP and acts as

an abstract layer that encourages security policy language users to use a standard,

abstract language instead.

27

2.4. Related Works

2.4 Related Works

As mentioned in section 1.2, lack of standard for security policy languages has been

noted before. Research such as, SecPal [44], aimed to address this issue accord-

ingly. In this section, however, few research that was conducted to provide security

users with a framework for security policy languages will be reviewed.

2.4.1 A Framework for Multi-Policy Environment

Kuhn et al. presented a fascinating framework for supporting security policies in

a multi-policy distributed environment back in 1995 [113]. In their definition, the

framework is literally a policy library that facilitates policy implementation by using

mechanisms which have been defined for policy separation, policy persistency and

policy reusability. The framework also provides a platform for policy reasoning and

conflict.

The paper starts by categorising security policies into three different family

models, namely the: Algebraic Family, the Lattice Family and the Expert Sys-

tem Family. In their framework, a policy implementation is a formal representation

of that model (family) consisting of a high-level semantic description and model

implementation code.

The Algebra family represents those security models which are presentable us-

ing an algebraic model. The algebraic model itself defines syntax specification of a

policy. In addition, the algebraic family provides modules for specification of ab-

stract data type, type independent specification of abstract data-type like array and

list and inheritance of complete security policies.

The Lattice family maps the access-control model, which is widely used within

the field of computer security. In this family, all of the entities that are governed

by policies are attributed. The attributes are used to map the flow of information

security throughout the system. The paper claims that every access-control based

security policy that utilises attributes can be rewritten in the form of this family.

28

2.4. Related Works

The last and final family is the Expert family, which effectively maps those

policies that are written in terms of rules and facts. Such a model can be useful for

the security policies which require rapid changing and evolution that can be directly

be applied onto the rules and facts of the model.

Unlike other papers that have been reviewed as part of this research, Kuhn et

al.’s paper provides algebra that supports policy comparisons and synthesis. The

paper claims that such algebra would assure the co-existence, reuse and implemen-

tation of security policies, in addition to defining inter-policy relationships in multi-

policy environments.

The paper then provides more information about the algebra, its operators and

the way that the algebra presents a policy. It also briefly shows how a security

policy can be mapped to a model and how a custodian paradigm will be used for

implementation [98]. Finally, the paper provides a real world policy example that

is using a Chinese Wall model and shows how the framework can be used to model

and implement such a policy.

As mentioned, Kuhn et al.’s paper was written about 20 years ago, and yet

it covers the majority of concepts that are utilised in the most up-to-date security

policy models and security policy languages. So from that point of view, this is

a fantastic piece of work that undoubtedly helped a wide range of researchers to

continue their research on security policies into the present day. In fact, this paper

was the basis for the use of an algebra in the present research in order to introduce

even a more acceptable and presentable framework for security policy languages.

2.4.2 Representing OWL Based Security Policies

Unlike the standard for security policy languages, the lack of an interoperability

framework for security policy languages has received limited attention previously.

Clemente et al. presented a solution for this business requirement in [61]. In order

to explore Clemente’s proposed solution in more detail, it is necessary to be more

familiar with the following concepts:

29

2.4. Related Works

• Ontology Web Language (OWL) is a set of markup languages designed to

be used by applications that are required to process the content of information

in addition to presenting information to humans. OWL has more facilities for

expressing meaning and semantics than XML, thus OWL goes beyond similar

markup languages in its ability to represent machine interpretable content on

the Web [38].

• Common Information Model (CIM) provides a common definition of man-

agement information for systems, networks, applications and services and al-

lows for vendor extensions. CIM’s common definitions enable vendors to ex-

change semantically rich management information between systems through-

out a network. CIM is a standard proposed by the Distributed Management

Task Force [6].

The Clemente et al.’s paper for the proposed solution starts by defining the re-

quirement for a framework for security policy languages and then describes the

advantages of semantic policy languages. In addition, the paper continues by se-

lecting a limited number of policy languages namely KAoS [148], Rei [107] and

SWRL [103] and then proposes the solution by utilising CIM.

The Clemente et al. paper is also considered as a well-defined and well-presented

piece of work. In fact, this paper was the basis for the use of generic platform in the

present research in order to reduce the cost and delivery time of the project.

2.4.3 Identified Areas for Improvements

Despite the fact the two papers discussed above have had their influences in cur-

rent research, but reviewing these papers with current knowledge of security policy

models and languages in mind indicated that the papers can be improved in the

following areas:

30

2.4. Related Works

• Restricted Approaches: Both papers provide readers with solutions that sat-

isfy their users to a great extent but none of these approaches can be consid-

ered as generic approach to be adopted at any given time.

For instance, Kuhn and co-workers used two simple models (in addition to

one abstract model) to prototype security policies. The provided models seem

to be adequate to prototype security policies that existed at the time, but the

fact that computer science and particularly computer networking has been

revolutionised during the last decade implies that the models provided by the

paper more likely will not be sufficient to describe complex security policies

that are written and in use currently.

In addition to that, the Clemente et al.’s paper came to a conclusion to choose

semantic policy languages over non-semantic languages after comparing these

two in the paper. The main reasons were - extensibility at runtime and the

adaptability of semantic policy languages. The above mentioned advantages

of semantic policy languages are undeniable, but a quick research shows that

only a small portion of the available policy languages and the frameworks

used in industry and research are based on semantic languages like OWL

[24]. Despite the fact that there is no limitation on the use of non-semantic

security policy languages with CIM, the proposed solution focuses only on

semantic security policy languages to operate over the framework. By impos-

ing such a constraint, a large number of policy languages will not be able to

use the proposed solution.

We will describe in the following chapters that the solution provided by this

research is not restricted unlike the related works. The frameworks that is

presented as a result of this research will be able to learn, evolve and expand

when that is necessary over the time. That makes the framework independent

of time, technologies involved or even security policy languages used.

• Unrepresented Evidences: Although these two papers have been introduced

as an abstract of the research/development conducted, both fail to answer the

questions that may have been raised by curious readers.

31

2.4. Related Works

The Clemente et al.’s paper for example, does not pay attention to the for-

malism of security policy languages. Despite the fact that KAoS and Rei

both come with strong underlying formalism, the paper fails to demonstrate

the possibility of translation of security policy languages using their formal

specifications.

On the other hand, the Kuhn et al.’s paper provides readers with formalism to

a large extent but does not provide any implementation example. The paper

refers to other work that describes the custodian paradigm [98]. However,

having reviewed the papers, how the framework breaks down a policy and

how the custodian paradigm transits that to an usable piece of code is not

readily apparent. Even when the authors show how precisely the framework’s

algebra is applied to a real world example (the Chinese wall) and divide it

down to few sub-models, they do not show how the model gets translated into

actual code by the custodian paradigm.

The current research, however, starts with a generic algebra that formally de-

scribes security policy languages. Then it presents the readers with a step-by-

step development process of the framework. Such an approach A) will satisfy

curious readers that conversion of security policy languages is an achievable

goal (by means of algebra and security policy languages formalism) and B)

present readers with a detailed guidance that can be used for further develop-

ment and researches.

• Security Concerns: It is undeniable that security is a vulnerable subject.

Every security aspects of a system (in the current research the framework)

must be known and challenged against possible threats. Having the above fact

in mind it seems that these two papers do not pay attention to this subject.

The solution that is provided by the Clemente et al.’s paper uses CIM as

the medium between policy languages. It then describes how to map and

convert CIM to OWL in order to convert security policies between different

languages. Considering that the complexity of CIM to OWL conversion has

already been proven in [99] this complexity could lead to instability of frame-

32

2.4. Related Works

work when it comes to converting complicated and large security policies.

In addition to the above, it must be borne in mind that CIM aims to expand the

coverage of information interchange between a wide range of products and

vendors through a series of ongoing improvements. Although CIM claims

the standard can be used to exchange security information, this definition has

not been specifically tailored for this purpose. Hence, a great deal of atten-

tion is required when CIM is chosen as an interchange platform for security

policy languages in a multi-dimensional organisation. Failure to do so may

compromise the security of the system.

• The Kuhn et al.’s paper on the other hand shows how the two models defined

in the paper can be applied to a single policy (Chinese Wall) that can then

be translated by a custodian paradigm (without showing how the implemen-

tation works). However, the paper does not show how the two models can

and should interact with each other. In fact, the paper claims that when a pol-

icy uses more than one model, a decision has to be made as to which model

should be used for implementation. Such an approach could have been suf-

ficient for the policies that existed at the time, but as mentioned before, not

only might there be more than three defined models in present-day policies, it

is also more likely that the implementation must be applied to all of the mod-

els as opposed to only one. In addition to that, the interaction between these

models must be studied in order to minimise the vulnerability of the system.

Unlike the presented solutions, this research does not utilise any medium or

third party application/product in order to perform the conversion. Instead,

the research presents a framework that is implemented from ground up. The

research does not rely on the security model conversions that leads to its dif-

ficulty as it has been identified in the Kuhn et al.’s paper.

• Real World Example: The concept of converting security policy written in

different languages using a framework is an interesting subject within a multi-

domain environment presumably an organisation that is already using differ-

ent forms and types of security policies. However, none of the documents

33

2.5. Summary

above have shown how their framework can be used on and above an existing

security infrastructure.

In following chapters, however, the research shows (in a great extent) how a

real world example of a security policy written in a generic security policy

language can be converted to different security policy languages.

2.5 Summary

2.5.1 Chapter Summary

In this chapter, security policies were examined in more detail, including the history

of security policy models, security policy languages and the way that security policy

languages have been introduced to the industry. A typical architecture of a security

policy language was explored in detail to learn how they react to a request initiated

from outside and query access to resources.

In addition to the above, few other related researches conducted in the same area

as this research were also reviewed and critically examined from different perspec-

tives. It has also been shown the area that these works can be improved and detailed

and how the current research will address these issues in coming chapters.

2.5.2 Research Contributions of the Chapter

Other related research in the same area as this research have been identified and

reviewed. Then with the goal of improving these research in mind, they were looked

at from different angles. Possible areas in which those papers could be improved

were identified. These areas will be addressed throughout this research.

34

Chapter 3

The Framework Overview and

Design Challenges

In this chapter, the research presents :

• The requirements of the framework,

• An architectural overview of the framework,

• An overview of the abstract security policy language used by the framework,

• The current research road-map,

• The research contributions of the chapter.

3.1 The Requirements of the Framework

As a platform for security policy languages, the main purpose of the interoperability

framework is to enable security management of a distributed secure domain consist-

ing of few sub-domains and potentially governed by heterogeneous security policy

languages from an abstract level. The framework was designed to be a system

to meet the complex requirements of real world multi-dimensional organisations.

Having said that due to the non-existence of such a framework, its requirements

35

3.1. The Requirements of the Framework

could not be captured like other software applications by analysing the documents

or interviewing the actual users of the system. As a result, in addition to experts

refereed to at section 1.2.4 a set of 10 individuals within the industry were selected

to participate in a short survey. Their titles and justification for their selection listed

as follows:

• Solution Architects: Solution architects who design and architect software

applications have been chosen to provide their views on how different parts of

the framework should be selected and how these parts should communicate

with each other.

• Security Architects: Eventually the framework will work in a secured and

protected environment, therefore, security architects have been selected to

improve and enhance the framework’s blueprint from a security point of view.

• Senior Developers: System developer have been chosen to provide their

feedback on low-level designs of the framework. Although logically they

should have been invited to participate when the actual development of the

system started, however, decision was made to capture their valuable feed-

back at requirement gathering phase with the aim of having even smoother

development phase.

• Security Administrators: Security administrators are essentially actual users

of the framework. Their expectation of the system helped to capture even

more details on system requirements.

In order to obtain the above mentioned set of experts’ point of view on the

framework, a series of informal interviews was arranged. In addition to that, a small,

yet effective questionnaire was distributed amongst them to capture their feedback

in more formal way. A copy of this survey has been provided in Appendix D.

Gathered responses in addition to informal interviews filtered and normalised

in a way that each of these requirements abstracted to a high-level requirement.

For instance if one of the experts asked for the code-assist to be provided as part

36

3.1. The Requirements of the Framework

of the framework, such requirement categorised under supportability requirement.

In addition to that each provided sentence within the survey weighted in order to

translate the survey to system requirements more accurately. Summarising the in-

terviews and surveys would result the Non-Functional Requirements (NFR) of the

system as follows:

• Simplicity: This specific requirement is more related to Abstract Security

Policy Language (ASPL) of the framework. The ASPL should contain a num-

ber of small, orthogonal and well-represented constructs from which complex

scenarios can be coded. The simplicity should not compromise the expres-

siveness of the ASPL. The policies written in ASPL should be simple yet

comprehensible.

• Scalability: The framework as a platform for security policy language should

accept current and future security policy languages within the industry. The

framework should not be valid and useful for a trivial period of time nor

limited to number of security policy languages.

• Flexibility: Within the context of this research, scalability and flexibility are

closely coupled. While scalability that ensures future security policy lan-

guages would be able to use the framework (i.e. new generators for the frame-

work), flexibility ensures that ASPL is capable of expressing new features that

are possibly offered by the future security policy languages.

• Integrability: Concerns about the adaptability of the framework with current

and future projects. Taking the fact into account that the prime user of the

framework are multi-dimensional organisations, in simple words integrabil-

ity ensures that the framework can be easily coupled to current and future

security infrastructures.

• Supportability: It is feasible to provide user support via tools for typical

model and program management, such as creating, deleting, editing, debug-

ging and transforming policies.

37

3.1. The Requirements of the Framework

��������	
���

��������	

��������	�����	

��������	������

�������

�	
	����

��

�������

�	
	�����

�

�������

�	
	����

��

Figure 3.1: Overview of the Framework

Based on the captured information, the blueprint of the framework for security

policy languages was drawn. Figure 3.1 represents high level architecture of the

framework. In this figure:

• ASPL: ASPL is an abstract human readable language that has been designed

to allow users to communicate with the framework. The grammar and syntax

of the ASPL represents the syntax and grammar of all the security policy

languages that the framework supports.

• Semantic Model: The semantic model is the core structure of the framework.

The structure of the semantic model is independent of security policy lan-

guages. It is the perfect abstraction that decouples the input syntax-oriented

ASPL from the target security policy languages.

• Generators: Valid and parsed scripts will be transformed to language specific

scripts using generators. The generator would be responsible to generate lan-

guage specific scripts based on the populated semantic model. The generated

scripts will be sent outside the boundaries of the framework.

38

3.2. Architectural Overview of the Framework

���

���

��� ���

���

�	
��		���

�����	�	��

����	�	�	��

��������	�	��

���������	�	��

Figure 3.2: Percentage of Requested Requirements (NFR) Asked by Participants

3.2 Architectural Overview of the Framework

Taking the above captured requirement of the framework into account, the architec-

tural overview of the framework is presented in Figure 3.3. The internal components

of the framework based on the presented diagram are:

• Service Requester: Services provided by the framework have to be invoked

by external entity(ies). Service requester represent them in this diagram.

Service requester communicates with the framework (possibly) via ASPL

script(s). In the first release of the framework, the service invoker could be

a system administrator using a Graphical User Interface (GUI) to code the

ASPL commands. Enhancement of the framework in the future implies that

the service invoker can also be extended to other type of invokers. Remote

service invocation via XML (e.g. SOAP) can be presented as an example.

• Aggregation Layer: Represents a layer of interfaces which are responsible

to receive ASPL scripts in different formats. The very first implementation of

the framework would only have one interface. However, as mentioned earlier,

other interfaces will be added to this layer whilst the frameworks features is

enhanced. These interfaces would have one characteristics in common: they

receive ASPL scripts in different formats.

39

3.2. Architectural Overview of the Framework

• Parser / Internal Components: These represent the core components of the

framework. As it has been decided, service invokers are using ASPL scripts

to communicate with the framework, therefore, a form of parser is needed

to parse the ASPL script based on an agreed and pre-defined grammar and

generate a semantic model accordingly. In addition to parser, more other

architectural components are needed. Configuration artifacts, ASPL grammar

rules and error handling framework are prime examples.

• Policy Generators: Policy generators are responsible to generate specific

security language policy scripts. These units obtain the semantic model that

is populated by the internal components of the framework. Then by traversing

the semantic model, the generators produce language specific scripts. These

scripts effectively are true representation of the ASPL script received by the

framework, in a specific security policy language.

• Interface Layer: In order to modularise and decouple the framework’s in-

ternal components from (policy) generators, interface layer has been utilised.

The layer makes the semantic model that represents the ASPL, independent

of generators.

40

3.3. Overview of the ASPL

����������	
�����

��������

���	�
���

����

��������

���	�
���

��������

���
�� ���
�� ���
��

�������������

��������������

����������

��������

�������

��������

�������

��������

�������

��������

������ ������

��������

���	�
���

���� ����

	���	��
�����	�	��

������

Figure 3.3: Architectural Overview of the Framework

3.3 Overview of the ASPL

As it appears from the name, the ASPL is an abstract language that comes with

its own language constants, operators and predicates. Unlike designing a security

policy language where the predicates, constants, special keywords are known from

the outset, ASPL is introduced with minimum number of features. The reason is

unlike other security policy languages, ASPL is a dynamic language. In simple

words, it is not a security policy language, it is a collection of all of them. It starts

with the minimum features it requires. As the framework grows, it accepts more

security policy languages. That in turn results ASPL to be mature and learns new

features.

41

3.3. Overview of the ASPL

Taking the above definition into account, the most simple security policy written

in ASPL should support the common scenario of security policy languages using the

minimal set of operators and keywords needed to describe that scenario:

Authorise [Protect]

Target "myTarget"

for executing

Actions "action1"

on [from]

Subjects "mySubject"

Listing 3.1: A Policy Written in ASPL

Listing 3.1 presents the simplest yet most common policy (or rule) with positive

authorisation policy. Positive authorisation policies define what activities (action) a

user (subject) can perform on the set of objects (target) in the domain. In the same

sense, negative authorisation policies deny defined activities performed by certain

subjects on associated targets.

The above presented listing presents such a simple security policy that does

not even contain conditions. In order to slightly enhance the ASPL, it has been

decided that Conditions be added to the ASPL. In addition to that, most modern

policy languages with the exception of few of them (that includes Cassandra [45]),

support Obligation Policies. Obligation policies specify the actions that must be

performed when certain events occur. The assumption here is in a secured domain,

obligation policies activities are already authorised to be performed. Therefore,

obligations can be merged to authorisation policies as detailed in listing 3.2.

42

3.4. The Next Steps

Authorise [Protect]

Target "myTarget"

for executing

Actions "action1"

on [from]

Subjects "mySubject"

under following

Subject Conditions "mySubjectCondition1"

when

Obligation Constraints "my Obligation Constraints"

met

do

Obligation Action "myObligationAction"

Listing 3.2: Enhanced Policy Written in ASPL

3.4 The Next Steps

Two major steps have to be taken before the current research considered as con-

cluded, namely:

A) Theoretical Study

In essence, the policy framework as illustrated above is responsible for provid-

ing a platform for policy languages in order to make them interoperable, which

would undoubtedly be the main contribution of this research. However, before

the system is designed in detail and as a pre-requisite to the present framework’s

design, it should be proved theoretically that such a transformation is possible.

The steps that must be considered on route to this goal can be summarised as:

43

3.4. The Next Steps

1. Policy Language Candidates

The framework including its ASPL do not support any security policy lan-

guage by default. Security policy languages must be introduced to the frame-

work gradually and in a controlled manner. On the other hand, a wide range

of security policy languages are available to choose from [24], which makes

it almost impossible to cover them all in a single project. Therefore, a hand-

ful number of security policy languages must be selected instead. As a result,

the ways that security policy languages can be classified into different cate-

gories must be identified. A policy language candidate must then be selected

from each individual group which represents the characteristics of that spe-

cific set. The result of this step will be a set of security policy language

candidates that will be input into the next step. These activities will be de-

scribed and performed in detail in Chapter 4.

2. Algebra Candidates

Logically, the most appropriate way to translate many-to-many languages is

to translate them to and from an abstract language. ASPL for instance, acts

as an abstract language which makes the security policy languages interop-

erable. Algebra is chosen as the abstract framework, whilst on the subject to

theoretically prove transformation of security policy languages is achievable.

Therefore, the research must identify and utilise an appropriate algebra for

security policy languages.

The algebra selected should be capable of expressing different scenarios

written in possibly heterogeneous policy languages. Hence, a few scenarios

should be evaluated against the chosen policy language candidates (step1).

Finally, research should identify any existing weakness of the selected alge-

bra and formulate a solution to address that accordingly. Chapter 5 describes

the steps that have been taken to choose, evaluate and enhance an algebra.

44

3.5. Summary

B) Experimental Tests

The framework has to be tested by real users and their interaction with the sys-

tem has to be observed. In order to achieve the goal, the following steps have to

be taken respectively:

1. Framework Design The framework has to be designed in accordance with

the software development best practices governed by an appropriate software

development methodology. Every decision taken during this step has to be

justified and mapped to the framework’s requirements or software develop-

ment best practice. Chapter 6 describes design of the framework in detail.

2. Framework Implementation and Evaluation Prototyping of the frame-

work is considered as the next step. Implementation of the prototype should

also be governed by an appropriate software development methodology. The

result of implementation phase that represents the framework with limited

functions and features will be tested by real users. Their feedback will be

captured and used to enhanced the framework accordingly.

The road-map of the research is illustrated in Figure 3.4.

3.5 Summary

3.5.1 Chapter Summary

In this chapter, the requirements of the framework surveyed and analysed. By

analysing the requirements of the framework the blueprint of the framework was

drawn. Then different components of the proposed architecture is explored in de-

tails.

In addition to the proposed design, the abstract language of the framework,

ASPL, have been introduced. Few simple policies that are supported by ASPL

are presented and explained in detail. Finally, road-map of the research, including

steps that will be taken at each stage is presented and explained.

45

3.5. Summary

��

���

���

��

�����	
���
��������
�����
�	
���
����

�	� �������
����
��������������

��������	
��

��	�	���������

�	�	���	�����

��	�	���

��

��

���

�����

������
�	�
���	�
���������	��
��

����
������ ��	������

�����	������	
��

�����
������	��

�	���	�	�	��

������
�	�
�������
������� ��
���

���������

���� ���	����

��

		� ��	�

	���������

�������
�
���
�
����
������
��	�����

��	�������
�����
�	
����

 �������
���
�������
����	��
���
����

������
��	�����
��	��������

����� !���	

�������

"������	�
���
��������
�����
�	

���
��������
����
�����
�����	�

 �������
���
��������
����	��

�������	��
��������

������	�

	���������

��

		��

���������	
�����

����������	
������

Figure 3.4: The Road-map of this Research

46

3.5. Summary

3.5.2 Research Contributions of the Chapter

Due to the non-existence of an interoperability framework for security policy lan-

guages, gathering up the requirements for such a framework is considered as a chal-

lenging task. In this chapter, it has been shown how in such circumstances these

information can be captured by utilising surveys and interviews. Also, it has been

detailed how different level of expertise provided by different set of specialists in

different areas can be used to obtain the framework’s requirements.

In addition, the architectural view of the framework which is considered as the

main contribution of the research, proposed and each components of the design is

explained in details. One of the main components of the framework is its abstract

security policy languages, ASPL, which is explained in this chapter.

As stated before, policy languages come with different levels of formalism, ex-

pressiveness and functionality to address different business usage and demands.

Variation of security policy languages makes it almost impossible to be able to de-

sign and develop a framework that satisfies all security policy languages. Thus, the

first step in the present approach to theoretically prove the translation of security

policy languages would be to select a subset of available security policy languages.

Indeed, the best and most logical way to categorise and select this candidate subset

would be to compare these languages in detail. In the next chapter, the way that

was considered for comparing security policy languages and how security policy

language candidates were selected for this research will be described.

47

Chapter 4

Security Policy Languages

In this chapter, the research presents:

• The necessity of comparison of security policy languages,

• A literature review of comparisons made of security policy languages,

• Requirements for choosing security policy languages,

• The overview of selected security policy languages for the research,

• The research contributions of the chapter.

4.1 Comparison of Security Policy Languages

Due to the availability of broad range of security policy languages, somehow we

need to narrow them down to a specific set and continue our research against those

security policy language candidates. No doubt the most logical way to be able to

choose an appropriate set of security policy language is to compare them in detail.

Although variation of these security policy languages in terms of formalism,

expressiveness, functionality etc., can be considered as their advantages, the bound-

aries between these languages are neither black and white nor crystal clear. Hence,

48

4.1. Comparison of Security Policy Languages

security policy languages often overlap with each other. Usually, newly introduced

policy languages are intended to address issues that were identified previously,

in addition to expanding their comprehensive coverage within the security arena.

This makes choosing the right and correct security policy language for a particular

project an even more challenging task.

As a result, policy languages have occasionally been compared from time to

time by researchers. The main goal of these comparison reports is to typically

compare the abilities of different policy languages for the work of other research.

These comparison reports of security policy languages often help network architects

to customise their security infrastructures and choose the correct security policy

language.

What really must be borne in mind is that these comparisons have often focused

on a small number of policy languages in order to be able to provide their readers

with a precise and clear answer. That, in turn, has produced a number of security

policy languages comparisons over the last decade or so. Knowing that the IT in-

dustry is continuously evolving at a rapid pace, these reports are usually outdated

quickly as time goes by. From the number of surveys regarding security policy

languages reviewed in this research, the following reports, which compared these

languages from different perspectives have been utilised.

4.1.1 Requirement-Based Comparison

Seamons et al. focused on policy languages with trust negotiation capability in

[139]. As it appears from the report’s title, Requirement for Policy Languages for

Trust Negotiations, the paper is dedicated to comparison of security policy lan-

guages with trust negotiation capability but before they conduct the comparison,

Seamons et al. clearly defined the requirements of security policy languages in

general terms. This clear definition has been used by other researchers over time

and has had an impact on other researches.

In a nutshell, Seamons et al. defined the requirements for security policy lan-

49

4.1. Comparison of Security Policy Languages

guages with trust negotiation capability as follows:

• Well-Defined Semantics: That requires the language to be simple and com-

pact with mathematically defined semantics such as: logic programs and re-

lational algebra. In their definition, a well-defined semantic policy language

should be able to express security policies independent of any particular im-

plementation feature of that language.

• Monotonicity: Monotonicity of a security policy language is implied if two

parties in a trust negotiation process succeed in achieving trust, then addi-

tional disclosure by either party should not have any impact on the trust ne-

gotiation decision.

• Credential Combinations: A security policy language with trust negotiation

capability must allow policy writers to require submission of combinations of

credentials using conjunction and disjunction.

• Constraints on Attribute Values: A security policy language should allow

policy writers to constrain submitted credentials to have a certain type and

restrict the values of any other attribute.

• Credential Chains: A policy language must provide enough expressive power

to describe and constrain chains of credentials to its users.

• Transitive Closure: Policy languages with trust negotiation capability should

allow users to define trust to be transitive under certain circumstances.

• External Functions: Policy languages should utilise well-defined external

functions for operation and comparison (e.g. Date).

• Authentication: An authentication requirement means that at runtime, the

credential submitter will have to demonstrate knowledge of the private key

associated with a public key referred to in the credential exchange process

[139].

50

4.1. Comparison of Security Policy Languages

Following the definition of requirements for security policy languages for trust

negotiation, the report compared four policy languages with trust management ca-

pability, namely: PSPL [54], TPL [100], X-Sec [49] and KeyNote [51]. The report

then challenges each of the above mentioned policy languages against the require-

ments that it defined and presented.

Uniqueness and Areas for Improvements

Seamons et al. presented their research more than a decade ago. Knowing the

fact that the computer science is evolving at a rapid pace, most of the languages

that the report compared and indeed the comparison result itself are now outdated

and cannot be referenced anymore. A more up-to-date set of languages should

be compared using the requirements provided if trust negotiation comparison of

security policy languages is required.

The uniqueness of this report is that it pioneered the comparison of policy lan-

guages by defining the requirement for that comparison first. The paper also assisted

other researchers by clearly defining the requirement for trust negotiations. Inspired

by the Seamons et al. paper, this research will also use a set of tailored requirements

for comparing security policy languages that should work on the framework.

4.1.2 Scenario-Based Comparison

Knowing the fact that identity theft and uncontrolled exposure of sensitive infor-

mation are a growing risk for internet users, Duma et al. decided to challenge the

usefulness of security policy languages against these risks [76].

The ideology of the report is based on scenarios. To be more precise, in order

to compare policy languages, the report defines a set of criteria. Following this, for

each individual criterion which emerges from real user needs, the report presents a

scenario to evaluate the language. If the scenario can be expressed and encoded in

a language, then the language fulfils the corresponding criterion.

51

4.1. Comparison of Security Policy Languages

The report compares six policy languages, namely: Protune [53], Rei [107],

Trust-X [33], KeyNote [51], Ponder [67] and APPEL [65]. The scenarios it uses for

evaluation are as follows:

• Minimal Information Disclosure: Objects that are least sensitive will be

selected first for disclosure.

• Mutual Exclusiveness: Control the concurrent release of data objects that

might be sensitive together.

• Type of Classification: Make sensitive objects known and express hierar-

chies of sensitive objects, semantic equivalence, relationships and more.

• Granularity of Objects: Express the granularity of sensitive objects.

• Access Control: Control to whom sensitive objects are released.

• Sensitive Policies: Control the release of policies that might themselves be

sensitive.

• Push Control: Address deadlocks due to sensitive policies that cannot be

released.

• Usage Control: Control how data should be handled by the receiving party.

At the end, the report provides a table that illustrates what each security policy

language is capable of with regards to expressing and coding each specific scenar-

ios. The result is presented in Table 3.1.

Uniqueness and Areas for Improvements

Very similar to Seamons et al., Duma et al. pioneered comparison of security poli-

cies languages by providing a set of scenario as oppose to characteristics of security

policy languages. This point of view on the comparison of policy languages makes

this report unique in its category. In fact this research also inspired by the Duma et

al. paper.

52

4.1. Comparison of Security Policy Languages

Table 4.1: Comparison of Security Policy Languages [76]

Having said that it has been noted that one key scenario that this report fails

to evaluate is the capability of negotiation with the third parties. Negotiation is

provided by almost all modern security policy languages and should have been in-

cluded in paper’s criteria. It will be described in the next chapter that one the areas

that this research is going to cover, is negotiation.

4.1.3 Criteria-Based Comparison

De Coi et al. claimed that with their detailed and board comparison, users of se-

curity policy languages would be able to choose a correct language for their needs

[62] . To achieve this goal they rigorously analysed and compared twelve policy

languages in details over three years, with the report being concluded in 2008. The

first criterion that they considered was that the language selected must be popular

and widely used within the industry. Then they described the strongest point of each

individual policy languages and the reason why it became popular amongst secu-

53

4.1. Comparison of Security Policy Languages

rity policy language users. The languages that they reviewed were: Cassandra [45],

EPAL [42], KAoS [148], PeerTrust [92], Ponder [67], Protune [53], PSPL [54], Rei

[107], RT [115], TPL [100], WSPL [32] and XACML [119]. De Coi et al. then

evaluated these languages by comparing two sets of criteria, namely: core policy

properties and contextual properties.

Basically, the core policy properties that have been inherited from Seamons et

al. report [139] are used to challenge a security policy language theoretically. Core

policy properties are themselves divided into four different sub-properties, the first

two of which are exactly borrowed from Seamons et al. (as stated above). The full

list of these sub-properties can be presented as follows:

• Well-Defined Semantic: The same definition as presented in Section 3.1.1,

is used here.

• Monotonicity:The same definition as presented in Section 3.1.1, is used here.

• Condition Expressiveness: A policy language must allow specification of

under which conditions the request of the user should be accomplished.

• Underlying Formalism: A good security policy language should be based

upon a well-known underlying formalism. Knowledge about the formalism

of a language would help users to understand some basic features of the lan-

guage itself.

The second set of properties called contextual properties challenges the practi-

cality of each language in details. Contextual properties are divided into 8 properties

defined below:

• Action Execution: This criterion evaluates whether a language allows the

policy writer to specify actions within a policy.

• Delegation: If a language allows policy writers to temporary delegate its

rights (mainly access rights) to others, then that security policy language ful-

fils this criterion. This criterion also challenges the chain of delegation.

54

4.1. Comparison of Security Policy Languages

• Type of Evaluation: Languages that do not support negotiation only support

local evaluation, whereas, languages with negotiation capability support dis-

tributed evaluation (supposedly each party involved in the negotiation would

be equally entitled to break the negotiation). This property determines the

type of evaluation each security policy language support.

• Evidences: Credentials electronically signed by third parties are referred to

as evidences in this report. Determining whether a policy language is capable

of providing evidences is the main goal of this property.

• Negotiation Support: The name of the property speaks for itself. Whether a

security policy language supports negotiation is evaluated by this criterion.

• Policy Engine Decision: Although logically the decision in response to a

request can be a simple boolean object, some policy languages are capable of

providing more information to the requester, in the event that their requests

are denied by the policy. The ability to provide such an information to the

requester would be determined by this property.

• Extensibility: Extensibility is another property that speaks for itself, yet not

practically easy to determine. Almost all languages compared provide their

users with a level of extensibility.

The uniqueness of this comparison is that it has independently compared a wide

range of policy languages with different levels of expressiveness and provides a

clear view of the abilities of these languages in one go. The result of this comparison

has been provided in Appendix B.

4.1.4 More Comparison of Security Policy Languages

In addition to the above, the following comparison reports have also been studied

and reviewed as part of this research. They have been described briefly as follows:

55

4.2. Requirements for Choosing Security Policy Languages

• A Comparison of Two Privacy Policy Languages: EPAL and XACML

[39]: This report aims to compare two industry standard security policy lan-

guages: EPAL and XACML. The report provides an in-depth comparison

these two policy languages instead of paying attention to other available secu-

rity policy languages including those that are widely accepted in the industry.

• A Survey of Privacy Policy Languages[112]: This report compared a wide

range of security policy languages (or privacy policy languages as it is termed

therein). Unlike the previous report, it tries to compare more than a dozen

languages but it fails to clearly describe how the authors have arrived at the

concluded result. They claimed to have developed a framework for compari-

son of the languages in question but, the report fails to show any information

about the framework.

• Survey on XML-Based Policy Languages for Open Environments [34]

Compared to the two surveys above, this report can be described as very well

presented, organised and provides extensive comparisons. As the name of the

report suggests, it only focuses on XML-based policy languages. The report

compares X-Author, FASTER, XACL, XACML and SPL, and satisfactorily

describes each language. In some cases, it also describes the infrastructure

and model of languages in detail, then compares these languages extensively

in 22 different categories. Without a doubt, this is a very interesting survey

and can be compared with the report from Duma et al. Its only shortcoming

with respect to the present research was that it only focuses on XML-based

security policy languages.

4.2 Requirements for Choosing Security Policy Lan-

guages

As noted above, policy languages can be evaluated and classified from different

perspectives, for instance, policies with or without negotiation capabilities or poli-

56

4.2. Requirements for Choosing Security Policy Languages

cies with different types of evaluation, i.e. local or distributed. A wide range of

comparison reports that look at security policy languages from a different point of

view have been examined throughout this present research. Although each of these

reports were encouraging, not a single report that can be easily fitted within the

context of this research and allow choice of the desired security policy language

candidates could be found. As a result, these comparison reports were rigorously

reviewed over and over again. Then characteristics of each report were identified

in order to be used to generate ideas on how to develop a method of comparison,

which has been tailored for this research.

4.2.1 Blending All the Methods Together

Encouraged by the requirement-based comparison i.e. the Seamons et al. paper

[139], that presented readers with its own requirement for the comparison, it was

decided that the present research would have its own requirements for choosing the

security policy language candidates. The requirements must be an amalgamation of

characteristics of each comparisons reviewed by the research. The requirement that

were selected, in addition to the requirements already presented by other reports,

are described as follows:

• Underlying Formalism: As discussed in chapter 2, the research of Clemente

et al. [61] did not pay attention to the formalism of the languages they focused

on. It is intended to improve on that area with this research, hence, the policies

that will be chosen will preferably have strong underlying formalism.

• Well-Defined Implementation: As an overview of the design suggested

(please refer to chapter 3), policy language generators will be developed in

a way to directly communicate with the framework. That implies security

policy languages with a proper implementation will have a better chance to

smoothly bind with the framework and even make evaluation much easier.

• Rich Documentation: Unfortunately, not all security policy languages come

with rich and extensive documentation. Understanding the way that policy

57

4.2. Requirements for Choosing Security Policy Languages

languages candidates work is vital to this project, hence, they should provide

users with good amount and quality of proper documentation.

• Programming Language Friendly: Being more comfortable with Java-based

policy languages and taking into account that communication with these lan-

guages at low-level will at some point be necessary, then policy languages

that are considered Java-friendly security policy languages will have priority.

• Widely Used and Accepted:The proposed framework will hopefully be the

forerunner for the use of a standard and unique security policy language by

security policy language users. If those security policy languages that are

widely used by different levels of users are targeted, the chance to promote

this framework will be better.

By applying the above defined requirements, a set of policy languages have been

shortlisted. In the next step, the requirement definition was improved by merging

the report from Decoi et al. [62] with that of Duma et al. [76] as follows:

A) From Decoi et al. a short list of those policy languages that can cover more sce-

narios was taken, bearing in mind that less featured policy languages can cover

only certain (and probably less complicated) scenarios. That in turn implies if

languages with more features are chosen and can operate over the framework,

then most probably security policy languages with less features would also be

able to use the framework.

B) From Duma et al., security policy languages with different properties were se-

lected to mix and match accordingly. For instance, if one policy language with

distributed evaluation type was selected, then one policy language with local

type of evaluation would also be chosen. This approach would guarantee the

selection of wide range of properties to work over the framework.

The top level classification that was presented by Duma et al. was adopted. It

is believed that the top level classification of policy languages, as described in their

report and which is restated here, perfectly fits within the context of this research.

58

4.3. Overview of the Selected Policy Languages

“ Policy languages are classified in three group of Standard-Oriented, Research-

Oriented or In-Between of these two mentioned groups. Standard-Oriented pol-

icy languages are well defined and widely shared within the industry. However,

they come with restricted/minimal set of features. Research-Oriented policy lan-

guages are popular amongst academics. They usually provide advance features to

their users and go beyond the boundaries that have been put in place by standard-

oriented policy languages. There is also another group of policy languages that

are neither sufficiently advanced nor fully compatible with standardisation rules to

be considered in either of the above mentioned categories. These languages are

grouped in the third category called in between.” [76]

Taking all of the above requirements and properties into account and by extend-

ing the top-level classification of Dumas et al., XACML from the Standard-Oriented

group, Ponder from the In-Between group and Protune from the Research-Oriented

group were selected for further analysis and classification.

4.3 Overview of the Selected Policy Languages

In this section, the selected policy languages will be briefly examined in order to

become more familiar with their characteristics.

4.3.1 XACML

XACML stands for eXtensible Access Control Markup Language. The standard

defines a declarative access control policy language implemented in XML and a

processing model describing how to evaluate access requests according to the rules

defined in policies.

As a published standard specification, one of the goals of XACML is to promote

common terminology and interoperability between access control implementations

by multiple vendors. XACML is primarily an Attribute Based Access Control sys-

59

4.3. Overview of the Selected Policy Languages

tem, where attributes associated with a user or action or resource are inputs into

the decision of whether a given user may access a given resource in a particular

way. Role Base Access Contorl(RBAC) can also be implemented in XACML as a

specialisation of Attribute Based Access Control [22].

Structure of Elements

XACML is structured into 3 levels of elements

• PolicySet,

• Policy,

• Rule.

A PolicySet can contain any number of Policy elements and PolicySet elements.

A Policy, in turn, can contain any number of Rule elements.

Attributes & Categories

Policies, policy sets, rules and requests all use subjects, resources, environments

and actions.

• A Subject element is the entity requesting access. A subject has one or more

Attributes.

• The Resource element is a data, service or system component. A Resource

has one or more Attributes.

• An Action element defines the type of access requested to the Resource. Ac-

tions also have one or more Attributes.

• An Environment element can optionally provide additional information [22].

60

4.3. Overview of the Selected Policy Languages

Targets

XACML provides a target, which is basically a set of simplified conditions for the

subject, resource and action that must be met for a PolicySet, Policy or Rule to

apply to a given request. Once a Policy or PolicySet is found to apply to a given

request, its rules are evaluated to determine the access decision and response.

In addition to being a way to check applicability, Target information also pro-

vides a way to index policies, which is useful if there is a need to store many policies

and then quickly shift through them to find which ones apply. Note that a Target

may also specify that it applies to any request. PolicySet, Policy and Rule can all

contain Target elements.

Conditions

Conditions only exist in rules. Conditions are essentially an advanced form of a

Target that can use a broader range of functions and more importantly, can be used

to compare two or more attributes. With conditions, it is possible to implement

segregation of duty checks or relationship-based access control.

Obligations

Within XACML, a concept called obligations can be used. An obligation is a direc-

tive from the Policy Decision Point (PDP) to the Policy Enforcement Point (PEP) on

what must be carried out before or after an access is approved. If the PEP is unable

to comply with the directive, the approved access either may or must not be realised.

The augmentation of obligations eliminates a gap between formal requirements and

policy enforcement.

61

4.3. Overview of the Selected Policy Languages

4.3.2 Ponder

Ponder was a highly successful policy environment used by many in both indus-

try and academia. Yet its design suffered from some of the same disadvantages

as existing policy-based frameworks. Their designs were dependent on centralised

infrastructure support such as: LDAP directories and CIM repositories. The de-

ployment model was often based on centralised provisioning and decision-making.

Therefore, they did not offer the means for policy execution components to interact

with each other, collaborate or federate into larger structures. Policy specification

was seen as an off-line activity and policy frameworks did not allow them to interact

easily with the managed systems. Consequently, such frameworks were difficult to

install, run and experiment with. Additionally, they usually did not scale to smaller

devices as is needed in pervasive systems. As a result, a new version of the frame-

work came into life: Ponder2.

Ponder2 comprises of self-contained, stand-alone, general-purpose object man-

agement system with message passing between the objects. It incorporates an

awareness of events and policies and implements a policy execution framework.

It has a high-level configuration and control language called PonderTalk and user-

extensible managed objects are programmed in Java.

The design and implementation of Ponder2 has been aimed to achieve the fol-

lowing goals:

• Simplicity: The design of the system should be as simple as possible and

incorporate a few built-in elements also if possible.

• Extensibility: It should be possible to dynamically extend the policy environ-

ment with new functionalities, to interface with new infrastructure services

and to manage new resources.

• Self-Containment: The policy environment should not rely on the existence

of infrastructure services and should contain everything necessary to apply

policies to managed-resources.

62

4.3. Overview of the Selected Policy Languages

• Ease-of-use: The environment must facilitate the use of policies in new envi-

ronments and prototyping of new policy systems for different applications.

• Interactivity: It must be possible for managers and developers to simply in-

teract with the policy environment and the managed objects, issue commands

to the managed objects and create new policies.

• Scalability: The policy environment must be executable on constrained re-

sources such as: PDAs and mobile phones as well as for more traditional

distributed systems’ management.

Ponder2 can interact with other software and hardware components and is being

used in environments ranging from single devices, to personal area networks, ad-

hoc networks and distributed systems. Ponder2 is configured and controlled using

PonderTalk, a high-level, object orientated language.

Ponder2 implements a Self-Managed Cell (SMC). Management services inter-

act with each other through asynchronous events propagated through a content-

based event bus. Policies provide local closed-loop adaptation, managed objects

generate events, policies respond and perform management activities on the same

set of managed objects. Everything in Ponder2 is a Managed Object. The basic

Ponder2 system comprises: Event Types, Policies, Domains and External Managed

Objects. It is up to the user to create or reuse Managed Objects for other purposes.

[79].

4.3.3 Protune

Protune, has a rich set of unique features that are currently not supported by any

other standard systems and languages. Some of these features can be individually

found in some systems (which are sometimes research prototypes).

An overview of this language can be presented as follows:

63

4.3. Overview of the Selected Policy Languages

• Flexibility Without Program Coding: Protune policies can express a variety

of static and dynamic requirements without requiring ad-hoc program code.

It supports attribute based access control where attribute values may be ex-

tracted from different kinds of evidence at different strength and deployment

cost. Protune’s software interprets the given policies and activates the right

procedures for gathering the required kind of evidence.

Protune’s policies may enforce simple obligations by linking some logical

pre-conditions (such as - event logged) to actions (implementing event log-

ging, notifications, etc.) that make the corresponding pre-condition true. Poli-

cies can declaratively specify when actions are to be executed and which are

the peers in charge of their execution. Actions can also be implemented as

shell scripts or Java method calls. Changing the policy does not necessarily

imply re-implementing actions. Actions provide also an effective integration

method for legacy software and data.

• User Awareness and Documentation: Proper policy documentation is es-

sential to raise user trust in a system. In fact, that was one of the require-

ments chosen for selecting the security policy language candidates. Having

said that, handwritten documentation is obviously very expensive, especially

as policies evolve along over time and the risk of documentation not being

aligned with the currently enforced policy becomes higher and higher during

a systems life.

Protune’s framework comprises: Protune-X, a unique second-generation ex-

planation facility that presents policies and explains access control decisions

in natural language. Since explanations are automatically derived from the ex-

ecutable policy: (i) costs are reduced, (ii) documentation is always up-to-date,

(iii) explanations can be contextualised specifically to the current transaction.

In addition to the above, Protune comes supplied with a rich level of docu-

mentation that describes how to write and use Protune policies in details.

• Policy Confidentiality: Documentation needs and co-operative enforcement

require policies to be accessible. This should be done with care, as poli-

64

4.3. Overview of the Selected Policy Languages

cies themselves may be confidential. Protune allows policy writers to assign

sensitivity levels to policy rules and predicates and restricts policy release

appropriately.

• Access Control and Usability: Policies are application-domain dependent

and so are the predicates in access control conditions. In standard frame-

works, the context is a black-box and application-specific terms are not stated

in a machine-understandable way. This prevents any support to information

exchange during authentication phases: users have to be involved because

the server cannot specify its credential requests directly to user agents. In

Protune, interoperability is enhanced by the means of a lightweight ontol-

ogy that can specify in a machine-understandable way what it means to be

authenticated to a specific system, what are the accepted credit cards, which

resources are public and so on. This enables automated support to access con-

trol procedures.This approach may significantly improve a user’s navigation

experience and harmonise usability requirements with strong and articulated

access control requirements.

• Privacy and Usability: Before using a service for the first time, a user

may wish to inspect the service’s certifications. Today, this must necessar-

ily be done manually. Protune supports this process by letting user agents

ask servers for certificates and other forms of evidence . The semantic infras-

tructure for interoperability mentioned above is well suited for automating

this task, too. Moreover, Protune enhances user privacy by supporting in-

formation release policies on the clients. The most common decisions about

releasing sensitive pieces of information (be they credentials, unsigned dec-

larations, or whatever) can be specified once and for all as a policy that the

user agent can automatically apply, thereby improving the users’ navigation

experience without sacrificing privacy.

• Low Deployment and Maintenance Costs: Protune has been designed to

reduce the cost of deployment in new application domains and subsequent

maintenance. By minimising program coding and exploiting knowledge-

65

4.4. Summary

based techniques to automate a wide range of operations, the costs related

to instantiating Protune’s framework in a new domain, and the costs related

to writing and maintaining policies are significantly reduced.

4.4 Summary

4.4.1 Chapter Summary

Due to the fact that there are a wide range of security policy languages available

and taking into account that each individual security policy language would require

its users to go through a learning curve, it was essential just to select a sample set

of these security policy languages.

In order to have a better understanding of security policy languages and perhaps

defining and/or borrowing a set of requirements for the policy language candidates

in this research, it was decided to rigorously compare and review these security

policy languages. Hence, a number of existing comparison and literature review

reports were examined, and that in turn, led to a choice of an appropriate candidate

set of security policy languages. Finally, the three policy languages that were cho-

sen were briefly examined in order to be more familiar with the features that these

languages provide.

4.4.2 Research Contributions of the Chapter

Despite the fact that a number of review and comparison reports for security policy

languages exist, choosing a suitable report that perfectly fits within the context of

this research was not a trivial exercise. In this chapter, different comparison of

security policy languages were analysed to great details. Then by cross referencing

these comparison reports with each other the uniqueness of each individual report

was highlighted.

66

4.4. Summary

In addition, encouraged by these reports, research, developments and compar-

isons, a specific requirement set for security policy language candidates to choose

from, was produced. How to define the requirements and how to apply them on the

set of security policy languages was shown step-by-step. The requirements set that

was developed, was specifically tailored for the purpose of this research and lead

the project to narrow down the security policy languages to a set of three languages,

namely: Protune, Ponder and XACML.

In the next chapter, algebra for security policy languages in particular will be

examined. It will be reviewed from different perspectives and the chosen one will

be evaluated against the security policy languages selected in this chapter.

67

Chapter 5

A New Algebra for Security Policy

Languages

In this chapter, the research presents:

• The usefulness of algebra to describe security policies with,

• A literature review of algebra made for security policy languages,

• The chosen algebra for the proposed framework and a step-by-step evaluation

of it,

• The way that the algebra can be expanded,

• The algebra completeness proof,

• The research contributions of the chapter.

5.1 Algebra for Security Policy Languages

Although access control or to be more specific, role-based access control as it is

known in operating systems such as, UNIX, was introduced some time ago, autho-

risation frameworks and policy languages have been significantly enhanced during

68

5.1. Algebra for Security Policy Languages

just the last few years. The phenomenon of the internet and the concept of shared

resources have forced security architects to allow different policies to be applied on

a single resource. The assumption that all policies would be written in the same

language and monolithic rule, seemed to be sufficient initially. However, when a

combination of heterogeneous policies became vital, people realised an indepen-

dent non-trivial combination process, or algebra, for security policy languages had

to be introduced. As a result, a number of security policy language algebras have

been developed during the last decade.

Before describing the algebra for the present research in detail, in the hope of es-

tablishing a common vocabulary, the advantage of using algebra for security policy

languages will be reviewed. These can be shortlisted as follows:

• The algebra, which can also be called the composition framework, describes

policies independent of their implementation. Such a description can be used

to examine the completeness and consistency of policies.

• In addition, formal specification, which also can be called algebra, minimises

the misunderstanding and ambiguity of policies when different parties refer

to the same policy. Such confusion often leads to major security breaches

[116].

• Also, the composition framework can be used for the decentralisation of

policy descriptions where complicated and sophisticated policies are broken

down into smaller manageable and/or heterogeneous policies [151].

• A compositional framework facilitates reuse of policies that are well specified

and known to be error-free.

• In the context of this research, the policy algebra, formal specification of pol-

icy or composition framework will be used to describe policies on an abstract

level.

Considering the advantages of using algebra in conjunction with security poli-

cies as stated above, it was almost obvious from the beginning that using algebra

69

5.1. Algebra for Security Policy Languages

in the present research is inevitable. Accordingly, a number of algebra for security

policy language have been reviewed, as listed below.

5.1.1 An Algebra for Composing Access Control Policies

Piero Bonatti is the foremost practitioner of security policy languages. No rep-

utable paper or book in relation of security policy languages can be found without

reference to Bonatti’s publications.

Bonatti, Vimercati and Samarati came up with the first algebra for modern pol-

icy languages in 2002 [52]. Their paper, which is very well organised, begins by

describing the characteristics of the composition framework, i.e. the Algebra. This

definition is used in almost all other papers. It would, therefore, be beneficial to

briefly review these characteristics from this paper.

In their definition, the algebra for security policy languages must provide:

• Support of Heterogeneous Policy Languages: The algebra as an abstract

combination mechanism should be able to express policies defined and en-

forced by different security policy languages.

• Support for Unknown Policies: In their paper, Bonnati et al. refer to this

property as Template. Templates are used to describe policies that are not

known at the time a security policy is written. For an example, one can think

of a policy that allows access of a user to a certain part of an application based

on date and time. These values, i.e. the parts of the application to be accessed,

the date and time of the request are not known until run-time. Templates are

used to describe such a scenario at an abstract level.

• Expressiveness: The algebra should be able to describe and express a wide

range of policy combinations independently.

• Support of Different Abstraction Levels: The composition language should

highlight the different components and their interplay at different levels of

70

5.1. Algebra for Security Policy Languages

abstraction.

• Formal Semantics: The composition language i.e. algebra, should be declar-

ative, implementation independent and based on a solid formal framework.

• Controlled Interference: Algebra cannot be simply used to combine poli-

cies. The algebra should also be used as a mechanism to detect and prevent

conflicts.

Following the definition of algebra characteristics, Bonnati et al. provided the

preliminary concepts. In their definition, widely accepted and used by following

researches, a Policy is a set of ground rules (or variable free) triples of Subject,

Object and Action. The paper details policy expressions by presenting the algebra’s

functions and minimal operators that it needs to express policies. These operators,

which are described in detail, are: Addition, Conjunction, Subtraction, Closure,

Scoping Restriction, Overriding and Template. One of the characteristics of this

paper, apart from being the first paper that presented algebra for modern security

policy languages, is the definition of Template, which presents a partial evaluation

of policies. Although, the concept of templates is criticised by subsequent papers,

most contemporary algebras introduced afterwards had no choice but to use the

concept of Template in their definitions.

The paper then continues by providing a few real word scenarios and tries to

express them using the defined algebra. It then proves that the provided algebra as

defined and enhanced throughout the paper is complete (with respect to the opera-

tions as detailed above). The only criticism applicable to the presented framework

is that it explicitly does not support expressing policies with negative authorisation

[151][131]. Although they have tried to overcome this limitation by expressing the

policy using the subtract operator, this violates the abstraction of policy languages

[151].

71

5.2. An Algebra for Fine-Grained Integration of Security Policies

5.1.2 A Propositional Policy Algebra for Access Control

Shortly after Bonatti presented their algebra for security policy languages, Wije-

sekera et al. published their framework, which was effectively an extension of the

former framework [151]. In their definition, policies are relations as opposed to

functions and they non-deterministically transform permission sets assigned to the

subjects. Permission in their definition is determined by ordered actions allowed on

an object (object,± actions) and permission sets is a set of permissions. Transform-

ing permission sets to permission sets using policies is the main difference between

what they have provided and what Bonatti presented, which transforms permissions

to permissions. In their justification, Wijesekera et al. believed that using collection

of permissions allows authors to model different non-deterministic, incomplete and

inconsistent policies.

5.2 An Algebra for Fine-Grained Integration of Se-

curity Policies

Having reviewed a few algebras for security policy languages, the conclusion was

reached that the algebra introduced by Rao et al. [131] could be an appropriate

choice for this research by providing the following facts:

• Enhanced Algebra: The Algebra that is provided by the Rao et al. paper

was proposed recently, hence, it addresses issues that have been raised against

previous algebra. That also implies the algebra can cover even more security

policy languages.

• Simplicity: Mathematics and algebra to be specific often are labelled as dif-

ficult subjects. Providing simple yet effective algebra will encourage readers

and future researchers in this field. Having the above-mentioned fact in mind

it has been noted despite extensive operators and semantics that have been

provided by the algebra, it is presented in an easily readable manner.

72

5.2. An Algebra for Fine-Grained Integration of Security Policies

• Implementation: Out of all other algebras reviewed by this research, the

algebra that is provided by the Rao et al. paper is the only one that suggests

how the algebra can be implemented by a security policy language thus, the

algebra would have a better chance to be extended in order to cover all the

security policy languages that were selected in the previous section.

The algebra is first reviewed in detail and then evaluated against the languages

that were selected in the previous chapter.

5.2.1 Policy Semantics

Rao et al. have presented a simple, yet powerful, algorithm to describe XACML

policy languages in [131]. This was later extended by Zhao et al. in [155].

In their notation, a that characterises an object, subject or an environment is a

finite set of names. In the same sense, a domain defines a set of possible values for

a and is denoted by dom(a). Taking these notations into account a request is defined

as follow:

Definition 1: Let a1,a2, ...,ak be attribute names and let vi ∈ dom(ai)(1 < i < k)

then r described as r ≡ {(a1,v1),(a2,v2), ,(ak,vk)} is an access request.

Using the above definition, an request allowing a PhD student to access digital

library without restriction could be described as:

r ≡ {(user, PhD student),(act, access digital library),(time restriction, NO)}.

Assuming system denotes the field where all these entities (e.g. subjects, actions

etc.) co-exist in, then the state of system is defined as below:

Definition 2: Let S be the set of subjects, T be the set of targets, E be the set of

event triggers and C be the set of conditional constraints. Then, the system state is

defined as: ST =E×C×S×T . This definition allows a system state to be described

as: st = st(e,c,s, t) consisting of an event trigger e ∈ E, the conditional constraint

c ∈C, subject s ∈ S and target t ∈ T .

73

5.2. An Algebra for Fine-Grained Integration of Security Policies

In another word, the state of the environment is an entity that captures all the de-

tails that require certain action to be executed on a target by a subject. The previous

example could be expanded by adding more restrictions to the request as follows:

r ≡ {(user, PhD student),(source, digital library),(time restriction, yes), (access

hours, universitys working hours), (download restriction, yes)(download per day, 5

papers)}.

Hence, the state of the environment will be determined not only based on the

subject (PhD student) and target (access to digital library) but also by taking condi-

tional constraints (time of the request) and triggers (the total number of downloads).

There are few concepts which have to be introduced before the next definition

is presented, namely: Authorisation Policies and Obligation Policies. Authorisation

policies determine whether a specific request is permitted under given conditions

and circumstances. Whereas, obligation policies define whether certain action(s)

have to be taken place assuming that specific conditions are met and fulfilled. For

example, an authorisation policy could determine whether an employee is permitted

to use certain part of a company’s system, for instance, finance system. However,

obligation policies define IF an employee is authorised to use the finance system,

then certain information has to be captured and stored for further references e.g.

time and date that the employee logged-in and perhaps the areas that he/she visited.

As it appears from the given example, the obligation policies will be executed when

the corresponding authorisation policies are fulfilled.

Both decisions are taken by authorisation policy that is denoted by da and deci-

sion taken by obligation policies denoted by do can only have one distinctive value

which will be selected from the set of {Y,N,NA}. These values present the deci-

sion made by a policy that are permitted (Y), denied (N) or not applicable (NA)

respectively. Taking these concepts into account, the security policy is defined as:

Definition 3: A security policy is defined as a request evaluation function

P : ST × A→ D , where ST is the set of system states, A represents a finite set

74

5.2. An Algebra for Fine-Grained Integration of Security Policies

of actions and D denotes the set of decision tuple for authorisation and obligation

associated with: P(Da,Do) = {(Y,Y),(Y,NA),(N,NA),(NA,NA)}.

The function P takes a system state st ∈ ST and an action a ∈ A as input and

returns a decision tuple (da,do) determining whether a is authorised and obliged to

execute in state st. As it is obvious from the decision tuple set provided in the above

definition, the authorisation and obligation decisions support three values namely:

Y, N and NA. However, a close examination of decision tuple shows the decision set

does not include: (N,Y),(NA,Y). The reason is the obligation policies only satisfy

when the corresponding authorisation policies are satisfied in the same state of the

system.

5.2.2 Policy Constants

The policy constants that have been defined for algebra can be presented as :

Definition 4: A Permit Policy is defined as : P+ : ST ×A→ (Y,NA). P+ permits

all requests in at any state of system without considering any obligations.

Definition 5: A Deny Policy is defined as P− : ST ×A→ (N,NA). P− denies all

requests in any state of system without considering any obligations.

5.2.3 Operators Applied to Policies

In addition, assuming P1(st, a) and P2(st,a) are two policies that are going to be

combined using algebra operators and assuming Pi denotes the integrated policy. In

order to illustrates the effect of integration of different policy operators, a combina-

tion matrix will be used. On the combination matrix, the first row and column of

the matrix denotes the possible values for each policy with regards to st and a and

the rest of the cells shows the value of integrated policy at different states of the

system. Whilst on the subject, it is also assumed that Y > NA, N > NA , as both Y

and N provide more information about a request than NA.

75

5.2. An Algebra for Fine-Grained Integration of Security Policies

Taking the above definitions and assumptions into account, algebra basic oper-

ators can be presented as:

Addition (+): Integrated policy Pi would be union of P1 and P2. In other words,

Pi authorises requests which are permitted by either of policies and denies requests

which are denied by both policies. Taking the above definition into account, PI(st,a)

will be denoted as : PI(st,a) = P1(st,a)+P2(st,a). A corresponding combination

matrix for the operator has been presented in Table 5.1.

�������������� ����� ���	
� �	�	
� �	
�	
�

����� ����� ����� �	
�	
� �����

���	
� ����� ���	
� �	
�	
� ���	
�

�	�	
� �	
�	
� �	
�	
� �	�	
� �	�	
�

�	
�	
� ����� ���	
� �	�	
� �	
�	
�

Table 5.1: Policy Combination Matrix for Addition Operator (+)

The above table shows how operator (+) takes authorisation and obligation val-

ues and provides with the decision. Each row and column of the table denotes the

effect of P1 and P2 respectively with respect to the request r.

Intersection (&): GivenP1 and P2, PI is defined as the intersection of these

two policies, if PI returns the same decision that is agreed by two policies. More

precisely : PI(st,a) = P1(st,a)&P2(st,a).

�������������� ����� ���	
� �	�	
� �	
�	
�

����� ����� ���	
� �	
�	
� �	
�	
�

���	
� ���	
� ���	
� �	
�	
� �	
�	
�

�	�	
� �	
�	
� �	
�	
� �	�	
� �	
�	
�

�	
�	
� �	
�	
� �	
�	
� �	
�	
� �	
�	
�

Table 5.2: Policy Combination Matrix for Intersection Operator (&)

76

5.2. An Algebra for Fine-Grained Integration of Security Policies

Negation (¬a , ¬o): ¬P1(st,a), returns PI which effectively denies and/or per-

mits every requests P1 permits and/or denies. Operator ¬a negates the result of

the evaluation of an authorisation request. It does not change the obligation eval-

uation result. Having said that, negation of ¬aP1(st,a) = {Y,Y} will give the re-

sult P1(st,a) = {N,NA} .The reason is that as per definition 3, the decision set of

{N,Y} is not permitted. Equally ¬o negates evaluation result of obligation policies.

¬o does not change authorisation policies in any case. P1(st,a) = ¬P1(st,a) where

¬ ∈ ¬a,¬o.

�������� 	
�
� 	
��� 	���� 	����

���������� 	���� 	���� 	
��� 	����

���������� 	
��� 	
�
� 	���� 	����

Table 5.3: Policy Combination Matrix for Negation Operator (¬)

Subtraction (-): PI which denotes the result of P1(st,a)−P2(st,a) is defined

as a policy that allows through all the requests that are authorised and obliged by

P1(st,a) and are not applicable by P2(st,a). It is not hard to express the subtraction

operator only using the operators we have covered so far, namely {+,&,¬}. In

other words, PI(st,a) = (P1(st,o)+¬aP2(st,a)) & (P1(st,a)+¬oP2(st,a))

�������������� ����� ���	
� �	�	
� �	
�	
�

����� �	
�	
� �	
�	
� �	
�	
� �����

���	
� �	
�	
� �	
�	
� �	
�	
� ���	
�

�	�	
� �	
�	
� �	
�	
� �	
�	
� �	�	
�

�	
�	
� �	
�	
� �	
�	
� �	
�	
� �	
�	
�

Table 5.4: Policy Combination Matrix for Subtraction Operator (-)

Projection (Π). Taking into account the fact that the state of an environment is

determined by events, constraints, subjects and targets, as described in Definition 2,

and assuming c is a computable subset of (ST ×A), the projection operator restricts

77

5.2. An Algebra for Fine-Grained Integration of Security Policies

the policy P to requests which are satisfied by c. In other words, the projection

operator takes parameter, the domain constraints and restricts the policy only to the

set of requests identified by domain constraint. If the domain constraint are not

satisfied it retains (NA,NA).

PI(st,a)=Π
(da,do)
c(ST×A)(P(st,a))=

 {da,do} if (st,a) ∈ c(ST,A) and P(st,a) = (da,do)

{NA,NA} otherwise

Perhaps reviewing the following scenario will illustrate the effect of the operator

in more details. With regards to a computable state of an environment an integrated

policy PI(st,a) can return either of the policy decision mentioned before, to be more

precise : PI(Da,Do) = {(Y,Y),(Y,NA),(N,NA),(NA,NA)}. Now consider a sce-

nario where restriction of the combination of the P1(st,a) and P2(st,a) in a way to

only return back a specific decision (for example (Y,NA)) in the computable state

of the environment is desired. In such circumstances, the projection operator will

be used to restrict the policy as described above.

PI(st,a) = Π
(Y,NA)
c(ST×A)(P1(st,a)&(P2(st,a)) (5.1)

Whilst on the subject, it would be useful to note that the projection operator is

a classic implementation of template that was introduced by Bonatti et. al (please

refer to section 5.1.1).

5.2.4 Expansion of Algebra

Definitions, operators and policy constants as described above would be able to

express the majority of policies combination for a wide range of security policy

languages defined within an environment using a set of ground, i.e. variable free,

authorisation and obligation policies. However, it is often necessary to go beyond

the boundaries of an environment.

78

5.2. An Algebra for Fine-Grained Integration of Security Policies

One of the security policy language candidates, i.e. Ponder, comes with nego-

tiation capability. Negotiation, which is a characteristic of relatively new security

policy languages certainly goes beyond the definition of an environment as each

party has no control or visibility of the environment of the other participant in the

negotiation. This characteristic of security policy languages cannot easily be fitted

into algebra as expressed above. Hence, it is necessary to know more about this

distinctive feature and expand the algebra accordingly.

The following example, which is widely shared among security policy lan-

guages with negotiation capabilities, goes beyond the concept of unilateral nego-

tiation as it is known in traditional distributed systems [106] [145]. In this scenario,

Alice, who is a police officer, would like to apply for a free language course through

an online agency. She does not mind providing information as long as it is not cat-

egorised as sensitive information.

• Step 1: Alice submits a request to the agency for access to the free language

course.

• Step 2: The agency replies by requesting that Alice shows a police identifi-

cation number issued by the state police to prove that she is a police officer,

and her driving license to prove that she is living in the same province.

• Step 3: Alice is willing to disclose her driving license to anyone, so she

sends it to the agency. However, she considers her police badge to contain

sensitive information. She negotiates with the agency and indicates that in

order to provide her police identification number, the agency must prove that

it belongs to a certain governing organisation such as, the Better Business

Bureau.

• Step 4: Fortunately, the agency has a Better Business Bureau membership

number. The card contains no sensitive information, so the agency discloses

it to Alice.

• Step 5: Alice now believes that she is safe to disclose her sensitive infor-

mation to the agency and so she provides her identification number to the

79

5.2. An Algebra for Fine-Grained Integration of Security Policies

agency.

• Step 6: The agency verifies that the identification number is valid. In addition,

it verifies that Alice lives at the same address as stated on her driving license.

Accordingly, the agency gives Alice a special discount for this transaction

and allows her to sign up free of charge for the course [126].

As is apparent from the above scenario, in simple terms, negotiations can be

divided into a series of steps. A message usually gets exchanged in each step whilst

the state of the negotiation is partially evaluated. Each evaluation leads the negoti-

ation to the next level. Messages that are exchanged at each step could come from

different roots and types. For instance, a message could be a Query message like

”Is Alice entitled to a discounted course if she provides her driving license and her

identification number?” Messages that contain credentials are called Policy Sets. In

the above example, the messages that contain Alices driving license number and

her identification number are among these messages. Messages can simply be de-

scribed as Decision Messages that indicate the end of negotiation, possibly with a

decision [55].

Expressing Negotiations with Algebra

The algebra for security policy languages as it has been described so far is incapable

of expressing the above mentioned scenario, simply because another dimension has

been added to the algebra definition, that being third parties. In the above example,

the agency’s relation with the governing organisation (Better Business Bureau, or

BBB) is simply beyond the visibility and control of Alice. Thus, the described alge-

bra is not capable of formulating the state of the environment as stated in Definition

2. It is, therefore, necessary to slightly expand the definitions to incorporate the

negotiation into it.

Definition 6 (Enhanced version of Definition 2): The state of an environment

is defined as a function that accepts ground (variable-free) and non-ground or more

appropriately, literal states. Assuming Σ denotes the ground literal states and refers

80

5.2. An Algebra for Fine-Grained Integration of Security Policies

to the set of literals that are held at the current state of the environment and Ω de-

notes the set of non-ground literal at the same state, an environment state is defined

as: ST : Σ×Ω.

Let S be the set of subjects, T be the set of targets, E be the set of event triggers

and C be the set of conditional constraints. Variable free state is defined as: Σ =

E ×C× S× T. This definition allows the state function to be described as: Σ =

st(e,c,s, t) consisting of an event trigger e ∈ E , the conditional constraint c ∈ C,

subject s ∈ S and target t ∈ T .

Ω on the other hand denotes those elements (and/or entities) that are non-deterministic,

located outside the boundaries of the environment but that would have a direct im-

pact on the state of environment which, in turn, may have its own impact on the

decision made by the policy that is operating at the state.

Taking the above definitions into account definition 3 can now be redefined as

follows:

Definition 7 (Enhanced version of Definition 3): A security policy is defined

as a request evaluation function P : Σ×Ω× A→ D, where Ω denotes the finite

set of non-ground literal, Σ is the set of system states, A represents a finite set of

actions and D denotes the set of decision tuples for authorisation and obligation

associated with: P{Da,Do}= {(Y,Y),(Y,NA),(N,NA),(NA,NA)}. The function P

takes non-ground literal Ω, an action a and ground state literals Σ (that intuitively

specifies which ground literals must be used) as input and returns a decision tuple

(da,do) determining whether the action is authorised and obliged to execute in the

state of environment. As is obvious from decision tuple set, it does not include

(N,Y),(NA,Y) as the obligation state is satisfied with positive authorisation.

In order to tackle the challenge of providing algebraic expression for policies

that involve in a negotiation, Divide and Concur (DandC) algorithm [68] has been

used. Divide and Concur is widely used in computer science. DandC works by

dividing and breaking down the main problem into two or more sub-problems of

the same type, until these become simple enough to be solved directly [64]. Using

81

5.2. An Algebra for Fine-Grained Integration of Security Policies

DandC, a policy involved in a negotiation will be divided into different stages and

instead of dealing with one policy, a series of small and simple policies will be de-

fined for each individual stages of negotiation. Please note each stage of negotiation

will be defined and characterised by ground and non-ground literals defined at that

stage.

In addition to the above redefinitions, another operator must be introduced that

utilises both the sets of ground and non-ground literal states held at any given time.

Assuming that Σ denotes the ground literal and refers to the set of literals which are

held at the current state of environment (triggers, events, conditional constraints),

and Ω denotes the set of non-ground literals (i.e. those literals that are held beyond

boundaries of an environment), the Trace operator for policy languages with negoti-

ation capability that provides partial evaluation with regards to Σ×Ω can be defined

as follows:

Trace (H) : A Trace for policy P, which is a converging and non-ambiguous

process is defined as a set of finite sequence of policies:

Pol0
Σ,Ω→ Pol1

Σ,Ω→ . . .
Σ,Ω→ Poln−1

Σ,Ω→ Poln

A Trace is complete if for the last element Poln in the sequence, there exists no

policy Polo such that

Poln
Σ,Ω→ Polo

In simple words, the Trace is complete if unchanged criteria of policy P, denoted

by Poln,Poln−1,Poln−2 . . . (with regards to Σ and Ω) results in the policy making

the same decision every time.

82

5.2. An Algebra for Fine-Grained Integration of Security Policies

Theorem 1:

For all policies P

1. In relation to Σ and Ω policy P has no infinite complete traces.

2. All complete traces of policy P (which are defined as finite sequences of poli-

cies) with an end policy element of Poln with regards to Σ and Ω have the

same final element, that is, policy P’s decision.

Proof:

In order to prove (1) in Theorem 1 the following must be proven simultaneously:

A) Policy P cannot have a complete trace with infinite end elements and

B) Policy P cannot have infinite complete traces with finite sets of end elements.

and the proof:

A) The term complete trace used in the theorem implies that the trace must come

to an end that is, policyn (which denotes the final decision of the Policy P). In

contrast, definition 3 clearly introduces a finite set of decision tuples for any

Policy P. In other words, Policy P cannot have a set of complete traces with an

infinite set of decisions/final elements.

B) Arguably there could be an infinite number of scenarios with a finite number

of final elements. However, using the term in relation to Σ and Ω within the

theorem narrows down the number of scenarios and distinctly specifies which

set of ground and non-ground literals is used.

Taking the above into account, the first part of the theorem proves itself be-

cause based on definition 3, policy P cannot have complete traces with infinite end

elements policyn and at the same time utilising the set of Σ and Ω narrows down

83

5.2. An Algebra for Fine-Grained Integration of Security Policies

the number of scenarios, hence, policy P cannot have infinite complete traces with

regards to Σ and Ω.

In order to prove (2) in Theorem 1, again the terms Σ and Ω are used, which

implies that the second part of the theorem is referring to a specific scenario. To

prove this, one must refer to definition 7, which specifies that the final decision of a

policy is determined by three inputs: Σ×Ω×A→D. In other words, the expression

can be read as: as long as combination of Σ , Ω and A are met, policy P will make

a decision. The way in which the policy collects these inputs (i.e. Σ , Ω and A) has

no effect on the decision that is made.

Considering that Trace is a sequence of policies that individually come to a

decision and considering the fact that the order of evaluating the sub-policies has

no effect on the policy’s decision (with regard to Σ and Ω) proves that different

complete traces must have the same final element.

To make this part of the proof more tangible, consider the above mentioned

scenario in which, Alice asks for a discount on a course. If the ground and non-

ground literals of the environment are kept the same, any alteration to the sequence

of the events does not change the policys decision. In other words, if Alice asks

the agent to disclose their BBB membership number first and then she discloses her

police badge number (and perhaps her driving licence), she would still be eligible

for a discount.

So taking the newly introduced operator Trace and the new definition of the state

of the environment into account the ultimate security policy P which is whether

Alice is eligible for a free language course can be broken into a number of security

policies, each of which has to be evaluated separately. In effect, steps 2 to 5, can

each be described individually as a separate security policy (i.e. operator Trace

now is in use). Each security policies can then be evaluated using the state of the

environment at that time which brings the non-ground variables into the picture.

84

5.2. An Algebra for Fine-Grained Integration of Security Policies

5.2.5 Algebra Expressions

In practice, expressing a policy using the proposed algebra requires multiple opera-

tors to be used at the same time, so it is necessary to define an algebraic expression

as follows. An expression consists of a left associative, an operator and a right as-

sociative. Trace has the highest precedence, negation and projection have the same

priority, followed by intersection and addition respectively.

Theorem 2: Assuming P1 = P1(st,a) and P2 = P2(st,a) the algebra expressions

can be described as:

• Community: P1 +P2 = P2 +P1 , P1&P2 = P2&P1

• Associatively: (P1 +P2)+P3 = P1 +(P2 +P3) , (P1&P2)&P3 = P1&(P2&P3)

• Complementary: P+ = ¬aP− , P− = ¬aP+

• Involution: ¬(¬P1) = P1

• Idempotency: P1 +P1 = P1 , P1&P1 = P1

• Distributivity: P1&(P2 + P3) = (P1&P2) + (P1&P3),P1 + (P2&P3) = (P1 +

P2)&(P1 +P3)

Π(P1 +P2) = (ΠP1)+(ΠP2),Π(P1&P2) = (ΠP1)&(ΠP2)

H(P1 +P2) = (HP1)+(HP2), H(P1&P2) = (HP1)&(HP2)

¬a(P1 +P2) = (¬aP1)+(¬aP2),¬a(P1&P2) = (¬aP1)&(¬aP2)

Proof:

Combination matrix is used to prove this theorem. Following proof shows how

one of these expressions, combination, was approached. The very same approach

can be used to proof other expressions.

85

5.2. An Algebra for Fine-Grained Integration of Security Policies

Assuming: P1 = P1(st,a) and P2 = P2(st,a), the effect of P1 + P2 is seen as

follows:

�������������� ����� ���	
� �	�	
� �	
�	
�

����� ����� ����� �	
�	
� �����

���	
� ����� ���	
� �	
�	
� ���	
�

�	�	
� �	
�	
� �	
�	
� �	�	
� �	�	
�

�	
�	
� ����� ���	
� �	�	
� �	
�	
�

Table 5.5: Policy Combination Matrix for Expression (P1 +P2)

Now if the operands are changed to read P2+P1 the combination matrix will be:

�������������� ����� ���	
� �	�	
� �	
�	
�

����� ����� ����� �	
�	
� �����

���	
� ����� ���	
� �	
�	
� ���	
�

�	�	
� �	
�	
� �	
�	
� �	�	
� �	�	
�

�	
�	
� ����� ���	
� �	�	
� �	
�	
�

Table 5.6: Policy Combination Matrix for Expression (P2 +P1)

Comparing the above two combination matrices simply leads to the conclusion

that the algebraic expression P1 +P2 ≡ P2 +P1 is true.

5.2.6 Algebra Completeness

The algebra completeness utilises the DandC. Hence, before the algebra complete-

ness discussion starts, it is necessary to describe DandC in more details.

86

5.2. An Algebra for Fine-Grained Integration of Security Policies

Divide-and-Conquer Algorithm

DandC was briefly explained in previous sections. Now we explain DandC in more

details in order to justify its usage in the research. As it has been mentioned in

the previous section, the divide-and-conquer algorithm provides a way to solve a

problem by:

1. Breaking it into sub-problems that are themselves smaller instances of the

same type of problem.

2. Recursively solving these sub-problems.

3. Appropriately combining their answers.

DandC is widely used within Computer Science. A number of these reasons can

be describes as follows:

• Tackling Complexity: DandC can be considered as a powerful tool that di-

vides a complex problem to manageable sub-problems and solve them ac-

cordingly. As it has been shown in previous section, the complexity of secu-

rity policies can be divided into sub-policies each of which can be dealt with

separately. DandC can be efficiently used with the negotiation policies.

• Implementation Efficiency: Within the concept of DandC, the key point is

to find a way to break the main problem to sub-problems, everything else

can be repeated. This approach can be simply implemented using recursion.

Recursion is very efficient approach using functional languages like Scala.

• Parallelism and Memory Access: Whilst on the DandC implementation sub-

ject, it should be added dividing the problem to separate and independent sub-

problem will allow developers to utilise parallelism in their code. Parallelism

is an interesting subject within the functional programming languages like

Scala.

87

5.2. An Algebra for Fine-Grained Integration of Security Policies

The other interesting fact within the implementation subject is the memory

access. Smaller problem produced by the sub-problems, would allow applica-

tion to deal with relatively smaller issues, thus, the problem can be cached and

solved before the system moves to the next one. That is the reason DandC im-

plementation using recursion is usually labelled as a non-memory-intensive

solution within the context of functional programming languages.

Algebra Completeness by Utilising DandC

Having gone through the definition part, it was shown how the algebra and its op-

erators are used to express policy integration, the proposed algebra should now be

challenged for completeness. In other words, the following simple question must be

answered: Is the proposed algebra capable of expressing all possible policy combi-

nations? Or simply, Is this algebra complete? In order to answer this question, start

from two-dimensional combinations matrix in which the algebra is used to combine

two different policies.

How a policy combination matrix could help to demonstrate the results of com-

bination for certain operators has been shown. The same matrix can be used to

show the completeness of the algebra. The matrix consists of 16 cells and each cell

has four potentially different values, namely: {Y,Y},{Y,NA},{N,NA},{NA,NA}.

Hence, the total number of combinations that can be presented by policy combina-

tion matrix is 416 = 4,294,967,296. Taking that into account, as the next step, one

of these possible available matrix combinations is selected and tested to provide the

corresponding algebraic formula for it.

Assume a policy matrix as shown in Table 5.7 has been provided and one would

like to find the corresponding policy expression.

88

5.2. An Algebra for Fine-Grained Integration of Security Policies

fi ������� ����	 ���
�	 �
�
�	 �
��
�	

����	 �
��
�	 �
��
�	 �
��
�	 �
��
�	

���
�	 �
��
�	 �
��
�	 �
��
�	 �
��
�	

�
�
�	 ����	 �
��
�	 ����	 �
��
�	

�
��
�	 �
��
�	 �
��
�	 �
��
�	 ����	

Table 5.7: A Combination Matrix Example

In order to tackle this challenge, again DandC algorithm has been used. Know-

ing that Pi +P{NA,NA} = Pi , one would be able to divide the given combination

matrix to a number of different sub-matrices. Each individual sub-matrix also would

have 16 cells, but only one {Y,Y} cell at the most.

Before continuing, in order to have common vocabulary, let us label each in-

dividual cells within a cell with a number starting from top left corner to bottom

right one, and assume the corresponding expression for each cell described by

ei,1 ≤ i ≤ 16 . Taking that assumption in mind the table is divided to 16 smaller

table each as one cell that results {Y,Y}. Now it is necessary to find the expression

for each {Y,Y} cell of those individual simple matrices created above by DandC. In

other words, three algebraic expressions have to be found which result {Y,Y} for

e9,e11 and e16.

�������������� �����	 �����	 �
�
	 ������	

�
�
	 �� �� �� ��

�
���	 �� �� �� ��

�����	 �	 ��
 ��� ���

������	 ��� ��� ��� ���

Table 5.8: Layout of Expressions Which Result {Y,Y}

89

5.2. An Algebra for Fine-Grained Integration of Security Policies

Let’s visualise this approach by considering the following tables. Assume that

the following table have been given where e2 and e11 are two algebric expressions

whose result is not {NA,NA}.

�������������� �����	 �����	 �
�
	 ������	

�
�
	 ������	 �� ������	 ������	

�
���	 ������	 ������	 ������	 ������	

�����	 ������	 ������	 ��� ������	

������	 ������	 ������	 ������	 ������	

Table 5.9: A Generic Combination Matrix Example

Using DandC, the matrix can now be divided into two simple matrices and then

an expression found for each of them:

It is obvious that combining the above two tables using the additional operator

(+) would result in the original table. Now if it is known what could possibly result

in a {Y,Y} at the e2 and e11 then it would be simple exercise to provide the answer.

Using the algebra operators that have been defined, the algebraic expression which

results in {Y,Y} at e2 and e11 would be ΠY (P1&¬oP2) and (¬a¬oP1&¬a¬oP2) re-

spectively. Using these two formulae any other possibility of these two cells can be

formulated. Taking that into account and assuming the formula for the Table 5.9 is

called f (P1,P2), then the combination matrix can now be formulated as follows :

f (P1,P2) = e2 + e11

= ΠY (P1&¬oP2)+(¬a¬oP1&¬a¬oP2)
(5.2)

Table 5.11 shows possible algebra formula for each individual cells that results

in{Y,Y} in this two dimensional matrix.

90

5.2. An Algebra for Fine-Grained Integration of Security Policies

�������������� �����	 �����	 �
�
	 ������	

�
�
	 ������	 �� ������	 ������	

�
���	 ������	 ������	 ������	 ������	

�����	 ������	 ������	 ������	 ������	

������	 ������	 ������	 ������	 ������	

�

�������������� �����	 �����	 �
�
	 ������	

�
�
	 ������	 ������	 ������	 ������	

�
���	 ������	 ������	 ������	 ������	

�����	 ������	 ������	 ��� ������	

������	 ������	 ������	 ������	 ������	

�

�������������� �����	 �����	 �
�
	 ������	

�
�
	 ������	 �� ������	 ������	

�
���	 ������	 ������	 ������	 ������	

�����	 ������	 ������	 ��� ������	

������	 ������	 ������	 ������	 ������	

Table 5.10: How to Use D&C to Find Integrated Policy Expressions

91

5.2. An Algebra for Fine-Grained Integration of Security Policies

�

�

�

�

����� ������ ������ �������

����� Π����
�

	
�
�

� Π����
�

	
�
�

�
�

� Π����
�

	
�
�

�
�

�
�

� Π����
�

 �
�

�

������ Π����
�

�
�

	
 �
�

� Π����
�

�
�

	�
�

�
�

� Π�����
�

�
�

	
 �
�

�
�

�
�

� Π����
�

�
�

 �
�

�
�

�
�

�

������ Π����
�

�
�

�
�

	
 �
�

� Π����
�

�
�

�
�

	
�
�

�
�

� �
�

�
�

�
�

	
�
�

�
�

�
�

�
�

�
�

�
�

 �
�

�
�

�
�

������� Π����
�

 �
�

� Π����
�

�
�

	
 �
�

�
�

�
�

� �
�

�
�

�
�

 �
�

�
�

�
�

�
�

���
��

��
�

���
�

�

Table 5.11: Possible Expression for Individual Cells Which Results {Y,Y}

It should be noted that a great level of attention have been given to those formula

that result {Y,Y} in each individual cells. All other values which could possibly held

at each individual cells have been ignored. The reason behind this decision is, if one

could find an expression that gives the result ei = {Y,Y} for each specific cell, then

the other possible values of the very same cell i.e. {Y,NA}, {N,NA} and {NA,NA}

can be expressed using ¬ operator because ¬oei = {Y,NA},¬aei = {N,NA} and

¬a¬oei = {NA,NA}.

Going back to the example at the beginning of this section, the corresponding

policy expression can now be presented as:

fi(P1,P2) = e9 + e11 + e16

= Π
Y (¬a¬oP1&P2)+(¬a¬oP1&¬a¬oP2)+(Py((P1 +P2)+P1))

(5.3)

Using the above approach, the algebra has been proven to be complete for a

two-dimensional matrix, which in turn proves that the following theorem is true:

Theorem 3 : Assuming M presents combination matrix results of P1 and P2,

there would be at least one policy expression f (P1,P2) that describes M(P1,P2) us-

ing the minimal set of operator that is f (P1,P2) = M(P1,P2).

In addition to above, the theorem can also be expanded for expressions of the

92

5.3. Summary

policies that are involved in the negotiation as follows:

Theorem 4: Let Mi denote a combination matrix in sequence i of a complete

trace of a given policy P that requires partial evaluation with regards to Ω and Σ ,

then an algebraic expression exists which describes policy P.

Proof: The keywords here are Complete Trace of policy P which implies that the

number of sequences in the trace is finite that is (1≤ i <∞). So on one hand there is

a finite number of sequences and on the other hand in theorem 3 it has been already

proven that the algebra is complete. In other words, for any combination matrix

there exists an algebra expression that contains algebra operators representing that

table (policy). Hence, combining these two facts proves that that the algebra is ca-

pable of representing a policy P that is participating in a negotiation using algebraic

expressions.

What must really be taken into consideration is the fact that the minimal set of

operators needed to describe and formulate policies as above are {P+ , P−, + , - ,

& , ¬a , ¬o , Π }. The operator H (defined in section 5.2.4) is needed to describe

and divide complex policies such as, policies with negotiation capabilities into a

finite sequence of simple policies in which the above operators would be sufficient

to describe them in detail.

5.3 Summary

5.3.1 Chapter Summary

Algebra as a composition framework has been utilised since security policies have

been introduced. Using algebra it would be possible to show how policies are com-

bined whilst they retain their independence. A number of algebras with different

characteristics and formalisms have been introduced to help security policy writers

to describe their policies more precisely and indeed more efficiently.

In this chapter, some of the algebras that have been introduced during the last

93

5.3. Summary

decade have been reviewed. These were examined from different perspectives, lead-

ing to the selection of the one that fits in the context of this research.

Furthermore, the selected algebra was evaluated against security policy lan-

guages that were chosen in the previous chapter and areas that need improvement

were identified and addressed accordingly.

5.3.2 Research Contributions of the Chapter

As mentioned earlier, security policy languages are changing and improving at a

rapid pace and as a result, their corresponding algebras (if there are any) are often

ignored, forgotten or cannot keep up with the pace. As an example, one of the

areas that has attracted attention in recent years is negotiation, but as it has been

discovered, there is no algebra existing to generally express this functionality in

detail.

In addition, it has been noticed, the algebra for security policy languages did

not pay that much attention to partial and conditional evaluation of security policy

languages. Thus, this characteristic of relatively new policy languages became a

prime focus of this research. In this chapter, a generic algebra was chosen that fits

partially in the context of the present research and evaluated against a negotiation

scenario. The algebra was enhanced by adding a new operator, Trace. Trace comes

into use when describing complex security policies that require partial and condi-

tional evaluation that is often unknown at compilation time, is desired. Policies with

negotiation capabilities that go beyond the boundaries of an environment is a per-

fect example of those policies that require partial evaluation. A few theorems that

utilise the newly introduced operator, Trace, were introduced and proved in turn.

Knowing that a combination framework, i.e. an algebra, that is capable of ex-

pressing complex policies proven to be functional, it can be stated with confidence

that the proposed abstract framework, which sits in the same level as the presented

algebra, would be able to operate as expected. Thus, the focus now will be on the

technical side of the framework and the step by step design of the framework from

94

5.3. Summary

the next chapter.

95

Chapter 6

Domain Specific Language

In this chapter, the research presents:

• The definition of domain specific language,

• The advantages, disadvantages and requirements of domain specific language,

• The domain specific language detailed implementation phases and patterns,

• The research contributions of the chapter.

6.1 How to Start the Design Phase

Previously, it has been mathematically proven that the security policy languages can

be mapped onto an abstract combination framework i.e. algebra. The next step is to

design and implement a computerised version of the combination framework. Back

in Chapter 3, whilst the overall requirements and structure of the framework was

presented, it also has been shown that the framework for security policy languages

would require the following two distinctive components:

A) Abstract Language: In essence, the framework for security policy languages

allows security officers and/or administrators to communicate with the security

96

6.1. How to Start the Design Phase

framework from single point of view, regardless of the underlying infrastructure.

In order to achieve such a goal users have to code their security policies and they

do need a medium to achieve such a goal: An Abstract Language. The grammar,

syntax, keywords and operators of the abstract language dictate how users must

write their security policies.

B) Infrastructure of the Framework: There is an array of off-the-shelf compo-

nents that need to be architecturally tied to each other using a carefully tailored

and designed, well-written code which must be started from the scratch. The

combination of all these components, modules, etc. shape the infrastructure of

the framework.

Analysing the framework and the abstract language from the users point of view

shows that framework (with the help of its abstract language) conceals the com-

plexity of the security policy languages and provides the users with a much simpler

language that works regardless of the underlying infrastructure. With that definition

in mind, if the search criterion is widened and similar approaches are reviewed, it

is evident that similar challenges have already been addressed by researchers in the

very similar fields.

A few other abstract languages with great level of similarities are reviewed rig-

orously as part of this research. As an example, a Database Administrator (DBA)

can easily query a database using a specific language called the Structured Query

Language (SQL). The DBA does not need to know anything about the underlying

database and/or the way it works. Whether the database that the DBA is utilising

is a simple open-source database such as, MySQL or whether it is a multi-tiered

database running on server farms, the DBA can execute the query.

Hyper-Text Mark-up Language (HTML) also falls in the same category. A web

designer can design a web page without being concerned with which web browser

will render the page. Despite the tools and technologies that eventually generates

and delivers the HTML page to its users, the web designer can focus on the design

97

6.2. Domain Specific Language

and development of the page.

There are lots of other frameworks available that can be referred to ANother

Tool for Language Recognition (ANTLR) [129], eXtendable Mark-up language

(XML) and many others can be presented as an example. Over and above all of

their benefits, each of these tools, products, frameworks, etc. hide the complexity

of the underlying infrastructure from the users. In addition, these frameworks pro-

vide an abstract language, which has been tailored to the users specific needs and

requirements as well as their domains needs. These frameworks provide their users

with a domain specific Language or DSL.

6.2 Domain Specific Language

Before exploring the DSLs in more detail, the meaning of the programming lan-

guage must be reviewed. In the context of this research, the best definition of a

programming language has been provided by [83].

“A programming language or computer language is a standardised communi-

cation technique for expressing instructions to a computer. It is a set of syntactic

and semantic rules used to define computer programs. A language enables a pro-

grammer to precisely specify what data a computer will act upon, how these data

will be stored and or transmitted, and precisely what actions to take under various

circumstances” [83]

As per the above definition, DSLs are essentially programming languages. De-

spite this, compared to GPLs, which are designed to cover a broad range of ap-

plications from business to scientific computing, DSLs are designed for a special

purpose and are usually aimed to address a very specific challenge; therefore, they

provide a limited level of expressiveness. Using DSLs facilitates the expression of

solutions for domain problems with less effort. Although DSLs are programming

languages, due to the usage nature of DSLs they are usually designed in such a way

98

6.2. Domain Specific Language

as to be more easily read by their users. The DSLs provide higher abstraction and

compactness and, therefore, better readability, which enables a larger group of peo-

ple with less programming knowledge to be productive. The DSLs usually have a

clearly defined domain focus.

DSLs are not a new concept. These languages have had several aliases over

time, such as: special-purpose languages, end-user languages or as Bentley [47]

called them little languages before the term domain specific language was coined by

Fowler [87]. The history of DSLs dates back to 1957 when a language for numeric

controlled machines was developed at the Massachusetts Institute of Technology

(MIT), which can be considered as the first modern DSL developed [58]. The DSLs

have also been used by researchers and have assisted users for decades.

It seems that the academic definition of DSLs have changed over the past few

decades. In the context of this research, Menricks description regarding DSLs can

be used as follows:

“DSLs are languages tailored to a specific application domain. They offer sub-

stantial gains in expressiveness and ease of use compared with GPLs in their do-

main of application” [125]

However, the definition provided by Fowler [87] would perfectly fit the context

of this research:

“A computer programming language of limited expressiveness focused on a par-

ticular domain” [87]

Although this is a compact and very well-defined expression for DSLs however

it comes with four key elements which worth exploring in further detail:

99

6.2. Domain Specific Language

• Computer Programming Language: A DSL is used to instruct a computer

to perform task or tasks, hence, as per the definition of modern programming

language given above, it is a computer programming language which will be

executable by a computer.

• Language Nature: As DSL is a programming language, it should have a

sense of fluency where the expressiveness comes not just from individual ex-

pressions but also from the way they can be composed together.

• Limited Expressiveness: Compared to a general-purpose programming lan-

guage which provides lots of capabilities, a DSL supports a bare minimum of

features needed to support its domain.

• Domain Focus: A limited language is only useful if it has a clear focus on

a small domain. The domain focus is what makes a limited language worth-

while.

6.2.1 DSL Stakeholders

There are three typical DSL stakeholders at three different levels:

• System/Software Engineers: Who are responsible for choosing or imple-

menting an appropriate DSL. In the context of this research, software engi-

neers who would be responsible for coding the actual framework will fit into

this category.

• Customers: Who are responsible for providing feedback on descriptions pro-

duced using a DSL. Security officers who provide feedback and verify the

outcome of the DSL will be categorised into this group.

• Developers: Who are responsible for constructing and managing DSL de-

scriptions. Within the context of this research, these would be the security

administrators who are responsible for interpreting the actual security poli-

100

6.2. Domain Specific Language

cies to DSL scripts, running them on the framework and providing customers

with the results.

The current trend towards end-user programming suggests that in some contexts,

the roles of customer and developer may be combined [110].

6.2.2 Boundaries of DSL

When it comes to DSL, an important issue is identifying the boundary of DSL.

More specifically: what constitutes a DSL and what does not? Compared with gen-

eral purpose languages, DSLs show a tendency towards the construction of domain

concepts in more details. As a result, a DSL will more accurately represent domain

practice and will more accurately support domain analyses.

In addition to the above, typically DSLs utilise external tools and products for

different purposes as opposed to building all the components within the code. Error

handling and debugging can be presented as examples. Finally, a DSL is often

computationally incomplete [110].

Despite all the definition presented above, still the border between DSLs and

GPLs cannot be easily distinguished. For example, COBOL was considered a GPL

but also a DSL for business applications. Prolog is another example of ambiguity.

Although Prolog is a programming language, it also can be classified as a DSL for

applications specified by predicate calculus.

6.2.3 Requirement for DSLs

Similar to designing software application, prior to the discussion of the design of

the system, the requirements of the system must be defined in detail in order to

justify the use of that particular application. The DSLs are not an exception to this

rule. In this section, the requirements of DSLs will be reviewed and will be mapped

to the current research accordingly.

101

6.2. Domain Specific Language

Generally, some of the requirements for GPLs apply directly to DSLs. The core

requirements for DSL are as follows:

• Conformity: The language constructs must correspond to important domain

concepts.

• Orthogonality: Each construct in the language is used to represent exactly

one distinct concept in the domain.

• Integrability: The language and its tools can be used in concert with other

languages and tools with minimal effort.

• Extensibility: The DSL (and its tools) can be extended to support additional

constructs and concepts.

• Longevity: The DSL should be used and useful for a significant period of

time.

• Simplicity: The language should be as simple as possible in order to express

the concepts of interest and to support its users.

• Quality: The language should provide general mechanisms for building qual-

ity systems.

• Supportability: It is feasible to provide DSL support via tools for typical

model and program management, such as, creating, deleting, editing, debug-

ging and transforming.

In addition to above, there are optional requirements for DSLs which may not

necessarily appear on all DSL implementations. These can be presented as:

• Scalability: The language provides constructs to help manage large-scale

descriptions. Of course, some DSLs will only be used to build small systems.

• Usability: This includes requirements such as, space economy, accessibility,

desirable understandability that may be partly covered by the core require-

ments [110].

102

6.2. Domain Specific Language

Taking the above definition into account it would be easy to justify the use of

DSLs in the current research as follows:

• Conformity: As discussed in Chapter 1, the framework and its correspond-

ing security policy language will be designed to cover important concepts in

security aspects of multidimensional organisations.

• Orthogonality: The abstract security policy language that comes with the

framework will be designed in a way to precisely describe security policy

languages.

• Integrability: The framework will be designed in a way to easily be coupled

with legacy and new security infrastructure.

• Expandability: In addition to the above, the framework originally will be

designed to work with only three security policy languages, however, there

will be no limitation to expand to other security policy languages.

• Longevity: The usage of framework is not restricted to a period of time.

• Simplicity: The framework (with the help of its ASPL) will assist security

experts to describe their security policies with less effort.

• Supportability: Describing security policies using abstract security policy

language may not be easily achievable, therefore, the framework will be de-

signed in a way to assist users to achieve their goals.

• Usability: The usability of the framework is reviewed in detail in Section

1.3.1.

6.2.4 Advantages of DSL

Implementing a DSL is always an interesting subject and has several advantages. A

few of them are discussed below.

103

6.2. Domain Specific Language

• Involving Domain Experts in the Software Development Process:If prop-

erly designed, DSLs provide an opportunity to involve the domain experts in

the architecture of the software product. This does not claim that software ar-

chitects are no longer needed if DSLs are used, but, claims that DSLs extends

the range of people to be able to contribute to the architecture of the software

product [41].

• DSLs are Concise: Therefore, DSLs are easy to look at, see, think about and

show. Roam [134] calls look at, see, think about and show, the four steps to

visual thinking. The DSLs due to their limited vocabulary are often designed

in a manner similar to human language, reducing the semantic distance be-

tween the program and the problem.

• Reusability: Taking the conciseness of DLSs into account as well as the

domain fitting notation, DSLs are (to a certain degree) self-documenting. This

in turn results the embodying of domain knowledge which eases reuse and

conservation [75].

• DSL Improves Development Maintainability: Perhaps the single most im-

portant benefit of using domain specific languages is that the domain specific

knowledge is formalised at the right level of abstraction hence, modifications

are easier to make and their impact is easier to understand.

Taking that into account the longevity requirement of a DSL which indicates

DSLs should not be useful for a single period of time, DSL-based develop-

ment tends to produce a higher payoff in the long run of development life

cycle [94] [74].

• Validate at Domain Level: A general purpose language compiler does not

know anything about domain concepts, whereas, a DSL can be checked for

domain constraint during the compilation phase [63].

104

6.2. Domain Specific Language

6.2.5 Disadvantages of DSL

Like many other tools and products used within the IT industry, DSL usage comes

with unique disadvantages, however, majority of these disadvantages are related to

the implementation of a new language.

• Design a Language is Arduous: Technically DSL design is a language de-

sign and no matter how easy and user friendly the language is, terminology

design is a complex and difficult task. That is why instead of designing a

completely new language with its complexities, most DSLs are embedded

within a higher-level language.

• Designing DSL Could be Expensive: Designing a DSL could be expensive

as the task must be performed by experienced programmers and involves in-

tense collaboration and communication with domain experts. Design of a

DSL must be financially justified first.

• Expandability of DSLs is Challenging: The nature of DSL is to focus on a

specific problem of a domain. The DSLs are usually evolving iteratively and

independently. In an enterprise application, which usually utilises more than

one DSLs at a time, often an inevitable task comes to force, which requires

combining a few DSLs together. That certainly raises a concern because com-

bining DSLs that are independently and iteratively expanding is not easy [94].

• Language Cacophony: As mentioned, DSL is effectively another language,

hence, the language must be taught to users. That implies the learning curve

of DSL based applications could be marginally higher than expected. Addi-

tionally, the learning curve increases the overall cost of developing a DSL-

based language [94].

• Blinkered Abstraction: The uniqueness and perhaps usefulness of DSL-

based application is that it provides its users with an abstraction which allows

the expression of domain behaviour with less effort. But the danger here is

105

6.3. DLS Implementation Phase and Patterns

this abstraction puts blinkers on users thinking. Blinkered abstraction prob-

lem is a general concern which applies to all abstraction but due to the fact

that DSLs provides a more comfortable way to manipulate abstraction, DSLs

make blinkered abstraction even worse [87].

• DSL performance: Often a DSL will suffer from a lower performance than

a hand written software, as it is yet another layer of indirection. As long

as performance is not critical, then the other DSL benefits will make this

a minor problem. In some cases, performance can be equal or faster due to

optimisation on high abstraction level but in most cases the potential is limited

[94].

6.3 DLS Implementation Phase and Patterns

As per any software development cycle, DSL implementation is divided into major

steps: design and development. However, as per Mernik [125], a more fine-grained

implementation of DSL can be presented by breaking down the cycle into five stages

namely: Decision, Analysis, Design, Implementation and Deployment.

Compared to bespoke software development, DSL development is not a simple

sequential process. The decision process may be influenced by preliminary analysis.

Analysis itself may have to supply answers to questions arising during design and

the design is often shaped by implementation considerations [125]. We already

covered the fact that DSL implementation is expensive, so in order to minimise

the risks, each stages of DSL implementation have to be rigorously followed and

mapped to the research.

6.3.1 Decision Phase

It has already been pointed out that due to the nature of DSL, its development is not

categorised as a cost-effective approach. The DSL investment must pay for itself in

106

6.3. DLS Implementation Phase and Patterns

the long term, therefore, DSL development must be justified beforehand. In some

cases, using an existing DSL could be considered as a more appropriate approach.

In addition, adopting a new DSL requires less expertise. The drawback here could

be using an existing DSL which is not very well publicised could be too risky and

even more expensive due to its possible maintenance in the long term.

To be able to make decision on when to use domain specific languages, DSL

decision patterns are identified and listed below. Most of these patterns help end

users with less programming expertise to perform software development. Majority

of these patterns would result in the improvement of software economics.

• Notation: The availability of appropriate new or existing domain specific

notation is the main characteristic of this pattern. The two common sub-

patterns are A) transformation of a visual to a textual notion and B) add user-

friendly notation to an existing API or turn an API into a DSL. MSC [17] that

is used for telecoms system specification for system architecture design can

be presented as an example.

• AVOPT: domain specific Analysis, Verification, Optimisation, Parallelisa-

tion and Transformation (AVOPT) of an existing program written in GPL is

considered as an arduous and time-consuming task perhaps due to code com-

plexity and/or lack of documentation. However, use of an appropriate DSL

makes these operations possible. This pattern overlaps with most of the other

patterns. OWL-Light [138] used for programmable web ontology is an exam-

ple.

• Task Automation: In software development, programmers often spend too

much time to generate codes which follows the same pattern. In such a sce-

nario, a code generator driven by an appropriate DSL would ease the opera-

tions. RoTL [123] used for traffic control can be presented as an example.

• Product Line: Some software products do not exist as a single stand-alone

application. They often share common architecture and are developed from a

common set of basic elements. In such scenarios, use of an appropriate DSL

107

6.3. DLS Implementation Phase and Patterns

could ease automated assembly. An example of this would be ASDL [149]

used for Language processing.

• Structure Representation: An appropriate DSL is often used to represent

structured data in more appropriate, human-readable and maintainable ways.

This category can be represented by JSON [66].

• Data Structure Traversal: Traversals over complicated data structures can

often be expressed better and more reliably in a suitable DSL such as, SQL

[124].

• System Front-End: Providing users with an appropriate DSL would often

facilitate the handling system configuration and adoption such as, Nowra [31],

which is used for software configuration.

• Interaction: Using well-defined DSL is often needed for complicated or

repetitive inputs for menu or text-based interaction with software application

for example, Microsoft excel macros.

• GUI Construction: Often GUI construction is performed by using an appro-

priate DSL. For example, XML and HTML represent domain specific lan-

guages for GUI construction.

Choosing the Appropriate Decision Pattern

In the context of this research, a few of the above mentioned patterns would come

into play simply as they match with what the research intends to implement. They

might overlap to some degrees. The ones that are not listed below are excluded due

to their incompatibility.

• Task Automation: As it has been mentioned previously, majority of scenar-

ios written in various security policy languages can be generalised using an

abstract security policy language allowing the task automation pattern above

to be applied to facilitate a more robust code generation.

108

6.3. DLS Implementation Phase and Patterns

• Interaction: In addition, developers (please refer to the stakeholders def-

inition above) of security policies will be using a text-based interaction to

communicate with the framework (as described in Chapter 3), therefore, in-

teraction pattern can be chosen.

6.3.2 Analysis Phase

Assuming that the decision is made to develop a new DSL in order to extract a

great level of detail about the domain, including objects and operations which are

commonly used in that particular domain, the domain Analyse Phase must com-

mence. Inputs can be provided from different sources which have implicit and

explicit knowledge about the domain that includes but is not limited to Domain Ex-

perts Knowledge, Technical Documentation, Customer Feedback and Reviewing the

Code (most probably the existing GPL code). The output of the phase would be a

domain specific terminology and domain specific semantic in an abstract mode.

The following patterns have been identified for DSL analysis which are as fol-

lows:

• Informal Pattern: The informal pattern, which can be predicated from its

name, follow no formal domain analysis process. According to Menrik et.

al. [125], most DSL developments are done without any formal analysis.

That often leads to incomplete requirements which increases the cost of DSL

development through maintenance. It is clear that the informal analysis would

be a suitable approach for a simple domain with limited requirements.

• Formal Pattern: The analysis of the domain can be preformed using well-

defined and known methodologies. This approach is known as formal anal-

ysis. Unsurprisingly, the disadvantages of an informal pattern are addressed

by the formal pattern; using a formal pattern facilitates the prevention of the

omission of important parts of the domain and leads to more complete re-

quirements.

109

6.3. DLS Implementation Phase and Patterns

There are several methodologies for domain analysis such as: FAST (Family-

Oriented Abstractions, Specification and Translation) [150] , FODA (Feature-

Oriented Domain Analysis) [154], ODE (Ontology-based Domain Engineer-

ing) [81], DSSA (domain specific Software Architectures) [142], DARE (Do-

main Analysis and Reuse Environment) [89], or ODM (Organization Domain

Modeling) [140] . It is useful to know that the majority of methodologies

that are used for formal domain analyses come from another research field

which is, Domain Engineering (DE) [118]. Domain engineering refers to the

systematic modelling of a domain [125].

Domain Driven Design (DDD) [80] which has attracted attention over the

last few years can also be presented as another methodology of DSL analysis.

DDD is a development technique which focuses on understanding the cus-

tomer’s problem and the environment in which the customer works. In this

definition, the Problem Domain refers to the problem that will be solved by

the output of DDD development. In addition to the defined problem domain,

based on the customers desires and needs, the developer builds a domain,

which can be a representative of all these concepts called Domain Model. The

model is discussed with the real users and customers and through an iterative

process, it is enhanced and refined [80].

While on the subject, it would be beneficial to talk about another concept

called Ubiquitous Language. On an enterprise software development team,

while many different Actors with different levels of responsibilities partici-

pate in the development process (e.g. developer, product owner, system cus-

tomer etc.), in order to reduce the miscommunication between the involved

parties, a language should be defined in which the key terms of the problem

domain are described in a language understandable to both the domain expert

and the developer. This language is called Ubiquitous Language. Creating a

ubiquitous language involves creating a glossary in which the key terms are

explained in a way that is understandable to both the domain expert and the

developer. This glossary is also updated throughout the project [80].

110

6.3. DLS Implementation Phase and Patterns

Choosing the Appropriate Analysis Pattern

While a formal analysis of the surrounding domain of the framework would have

been an ideal approach for the project, due the scale of the DSL that will be imple-

mented as part of this research, informal and formal approaches were combined in

order to gain the advantages of both patterns. As a result, in a series of informal

interviews with the domain experts and having a DDD methodology in mind, an

ubiquitous language has been defined. The language that originally used to com-

municate with the domain experts and other parties involved, later became the base

for the ASPL. In addition to above using the ubiquitous, the domain model was

defined, modified and enhanced through a series of sessions and presented to the

actual users.

6.3.3 Design Phase

Design phase approach is highly dependent on the previous phases and chosen ap-

proaches. Having said that, often DSL designers believe that the easiest way to

design a DSL is to host it on an existing language. There are possible advantages to

adopting such an approach, such as, easier implementation due to a reduced learn-

ing curve for the development team with that particular language. In addition, some

languages such as, Scala or Ruby, provide users with tools and features that can be

used to leverage the language [125].

The six possible approaches for DSL design are listed as follows:

1) Piggyback: The piggyback structural pattern uses the capabilities of an existing

language as the base for the DSL that is to be designed. Often a DSL needs

standardised support for common linguistic elements, such as, expression han-

dling, variables, subroutines or compilation. By designing the DSL on top of an

existing language, the needed linguistic is provided for free. The piggyback pat-

tern can be used whenever the DSL shares common elements with an existing

language [141]. Possible examples of the piggyback design are: YACC [105]

111

6.3. DLS Implementation Phase and Patterns

and LEX [114] processor.

2) Language Extension: The language extension pattern is used when adding new

features to an existing language. Often an existing language can serve new needs

by just adding new features to its core features. This pattern challenges the

designer to integrate the required features of DSL into existing language [141].

A DSL that follows the extension pattern is SWUL [56] which, supports the

development of Java SWING GUIs and is embedded into Java.

3) Language Specialisation: Developing a new DSL does not always mean creat-

ing something new. A more uncommon pattern is specialisation. In some cases,

the full power of an existing language may prevent its adoption for a specialised

purpose requiring the language to be reduced to meet the needs of a special do-

main. One example is, OWL-Lite [69], which is a subset of the Ontology web

language [141].

4) Source to Source Transformation: There are cases where the DSL cannot be

directly designed on top of an existing language using language extension, spe-

cialisation or the piggyback pattern. In those scenarios, it is often possible to

leverage the facilities provided by existing language tools using a source-to-

source transformation technique. Using this technique, the DSL source code is

transformed via a suitable translation process into the source code of an existing

language [141] [125].

5) Data Structure Representation: Assuming that the data structure traversal

method has been chosen during the decision phase, then the data structure rep-

resentation design pattern would be a suitable pattern to use. The data structure

representation pattern allows the declarative specification of a complex data.

Complicated structures are better expressed using a language rather than their

underlying representation such as graphs.

6) Entirely New Language: While using an existing language to create a DSL has

its own advantages and could be considered a favourite approach for develop-

ers, the DSL design and perhaps implementation will always be limited to the

112

6.3. DLS Implementation Phase and Patterns

host language boundaries, severely compromising the flexibility of the DSL. If

the DSL will be used among wide range of users and will be subject to future

enhancement, modification and expansion then using a host language as a vehi-

cle for implementation may not be an appropriate approach. In such a scenario,

design and implementation of a completely new language whose design bears

no relationship to any existing language would be a suitable approach. In prac-

tice, development of this kind of DSL can be extremely difficult and the costs of

design and implementation of a new DSL can be considerably high. Consider-

ing all these facts, unless adoption of this approach is justified in advance, this

pattern will not be developers’ first choice [125].

Designing a new DSL is no different than designing a GPL and like many GPLs

its design should follow the principals, which have been followed by well-known

GPLs design criteria such as, readability, simplicity, orthogonality, etc. The design

principles listed by Brooks [48], as well as Tennents design principles [143] retain

some validity for DSLs .

Irrespective of the DSL design pattern chosen, DSL design must take into con-

sideration both the characteristic of DSLs as well as the fact that users may not be

programmers. Generally, DSL adopt established notations of the domain and the

design should suppress a tendency to improve them. As stated in Wile [152], one of

the lessons learnt from real DSL experiments is:

“Lesson T2: You are almost never designing a programming language. Most

DSL designers come from language design backgrounds. There the admirable prin-

ciples of orthogonality and economy of form are not necessarily well-applied to

DSL design. Especially in catering to the pre-existing jargon and notations of the

domain, one must be careful not to embellish or over-generalize the language. Les-

son T2 Corollary: Design only what is necessary. Learn to recognize your tendency

to over-design.” [152]

113

6.3. DLS Implementation Phase and Patterns

Choosing the Appropriate Design Pattern

As previously mentioned, the flow of activities in the five stages of implementing

a DSL are not always sequential and each stage could directly and/or indirectly

influence the decision on previous steps. Taking todays modern languages, such as,

Scala or even the equivalent .Net language, would provide a wide range of features,

which makes DSL a successful, yet cost-effective task. Taking this into account

would narrow-down the design pattern dramatically. Patterns which are not fit for

the purpose of this research have been ruled out as below:

• Entirely New Language: Due to the difficulty and cost-effectiveness issues

related to this approach, its usage must be justified from the outset. In addi-

tion, this pattern targets DSL that are overcomplicated and cannot easily fit

into other options.

• Source-to-Source Transformation / Data Structure Representation: Since

this research does not deal with a complex data structure in the DSL and the

source for our DSL is not available to reuse, the above mentioned patterns are

not effective in this case.

• Language Extension: Ruling out the other patterns leaves the project with

piggyback pattern and/or its derivatives (i.e. language extension or speciali-

sation). Due to the nature of security policy languages and the scenarios that

they cover, simplicity of the to-be-developed DSL is predictable, which in

turn rules out the language extension. That is the design methodology for

complicated DSLs, which cannot be defined by the other two methods.

The chosen design methodology must be either piggyback or language special-

isation; however, at this stage, it is difficult to distinctively decide between either

of these two methods, hence, it was necessary to continue on to the next phase and

revisit the design phase later.

114

6.3. DLS Implementation Phase and Patterns

6.3.4 Implementation Phase

The final step towards the creation of a DSL is implementation. Similar to other

steps, there are different patterns that must be considered and the most appropriate

one should be chosen. Although this may sound similar to previous steps, in reality

the DSL implementation is the most difficult task among all steps, which have al-

ready been covered because DSL implementation patterns are solely used for DSL

development and attract no other attentions. In addition, compared to other GPL

development patterns, they are not very well known due to the lack of documen-

tation. The implementation decision can influence the needed development efforts

and should be considered carefully. As with any decision, analysis and design have

different possible implementation patterns that have been identified and discussed

below:

• Compiler / Interpreter: Perhaps the most logical way to approach DSL im-

plementation is the very same method for GPLs; using a Compiler and/or

Interpreter. A wide range of GPLs have been implemented in this way. An

interpreter interprets the DSL code in a four stage cycle of recognise, fetch,

decode and run. Both the interpreter and compiler would have a great level of

similarity but, generally the implementation of the interpreters requires much

less effort. In addition, greater simplicity and control over the execution en-

vironment as well as easier extension can be presented as advantages of an

interpreter over a compiler

As per the other patterns, the compiler/interpreter have both its advantages

and disadvantages. Because the compiler or interpreter must recognise the

code first, using this pattern could utilise strong syntax checking and error

reporting capabilities. Besides domain specific analysis, verification, optimi-

sation, parallelisation and transformation (AVOPT) is also possible when this

pattern is in use. Generally, AVOPT would be an effective tool when the user

community is large. Finally, due to the fact that developers are in full control

of almost every step of AVOPT, DSL syntax can be close to the notations

115

6.3. DLS Implementation Phase and Patterns

used by domain experts.

On the other hand, DSL implementation using this pattern requires a lot of

effort due to the fact that a complex language processor must be implemented

from the ground up. In addition, language extension is difficult mainly be-

cause most language processors are not designed with extension in mind.

• Preprocessor: Pre-processing happens before interpretation or compilation

commences. In other words, the pre-processor decouples the DSL code from

the underlying base language. That gives the developer a great level of flex-

ibility which comes in handy when developing the DSL. However, this im-

plies that syntax checking and any error reporting and error handling should

be postponed to compilation or interpretation time. There are different sub-

flavours of this pattern available, most of which map to a corresponding de-

sign pattern. These sub-patterns are detailed below:

– Lexical Pre-processors: Lexical pre-processors or in simple words macros,

are a classic example of DSL implementation using pre-processors. Macros

work by simple textual search-and-replace at the token rather than at the

character level. That usually is executed prior to any parsing performed,

according to user-defined rules. A classic use of macros is demonstrated

in the computer typesetting system LATEX and its derivatives [84].

– Source to Source: Source-to-source is another type of pre-processor

DSL implementation. Source-to-source pre-processors entirely translate

the DSL code to the base language.

– Pipeline: If the DSL code gets broken down into a set of sub-languages

and each set is processed by a different processor then the whole chain

presents the pipeline architecture for pre-processing.

• Embedding: Assuming a GPL allows the use of user-defined abstract data-

types and/or operators, then the DSL development becomes much easier by

extending the GPL, which will be known as the host language. Then de-

scribing domain specific notation using new data-type and operators would

116

6.3. DLS Implementation Phase and Patterns

be possible. As the DSL code is directly embedded into the host language, it

will obtain all the capabilities of the host language for free.

• Extension: Developers usually find it easier to make domain specific changes

to a GPL. These changes will result in an embedded tailored language without

sacrificing the generality and library support of the GPL. Although such an

approach would be suitable for DSL with limited expressiveness, the solution

may not be appropriate for a more complex approach.

Although extending the language is presented as a separate pattern, in reality,

it is another form of embedding DSL constructs in a host language. While

the embedding pattern attempts to construct DSL notation by simply defin-

ing new data-types and/or operators, the extending pattern has a tendency to

do the same by full-blown DSL features. Having this in mind the best place

to start language extending would be compilers; however, compilers get de-

signed without having extension in mind, hence, the extending pattern is a

much harder approach compared to other available patterns [125].

• COTS: Commercial Out of The Shelf (COTS) approach can also be used while

implementing DSLs. In this approach, the existing tools and/or notations

are applied to a specific domain. Typically, this approach involves applying

existing functionality in a restricted way, according to domain rules.

With the rise of the Java Virtual Machine (JVM) based languages like Scala

[127] and Ruby [144], Model Driven Engineering (MDE) became an inter-

esting subject for developers and researchers [50]. The MDE approach aims

to raise the level of abstraction in program specification and increase automa-

tion in program development. The MDE approach encourages users to utilise

models at different levels of abstraction for developing systems, thereby rais-

ing the level of abstraction in program specification. Tools for MDE are often

called Model Driven Software Factories [70].

The beauty of the COTS pattern for developing DSLs is that it allows DSL

architects and developers to define DSL syntax, artifacts, editors, etc. and im-

plement the entire platform using a model driven software factory. Mendixs

117

6.3. DLS Implementation Phase and Patterns

model-driven enterprise application platform [73] is targeted at the domain of

service-oriented business applications [71] and can be presented as an exam-

ple. The XML-based DSLs with board range libraries and tools, including

parsers, such as, SAX [122] or DOM [7], the analyser Xquery [27] and the

transformer XSLT [13] also fall in this category.

• Hybrid: Knowing that each single pattern has its own advantages and dis-

advantages makes choosing a single pattern to design and implement a DSL

more difficult than it appears. While analysis, verification, optimization, par-

allelization and transformation (AVOPT) seem necessary in DSL implemen-

tation and can be achieved using the compiler approach, embedding the DSL

into an host language will significantly reduce the DSL implementation ef-

forts, and while pre-processors pattern with its decoupling feature gets the

developer as closely as possible to the domain concepts, usage of COTS pat-

tern might seem a very cost-effective approach for DSL implementation.

Considering the difficulty of choosing a suitable pattern,in order to maximise

the advantages of implementing a DSL , sometimes it makes sense to com-

bine all these patterns into a single project, which leads to a final pattern, the

Hybrid. There are a number of examples provided that combine the compiler

and embedding patterns [78] [125].

Choosing the Appropriate Implementation Pattern

As discussed, choosing the appropriate pattern for DSL implementation is not easy.

As a direct consequence, the main characteristics of each pattern were compared

against the framework’s requirements in order to determine which pattern cannot

easily be adapted to the project. The results are detailed below:

• Compiler/Interpreter: Compiler and interpreters are used in DSL develop-

ment projects where AVOPT is a mandatory requirement of the DSL. Anal-

ysis and verification are a mandatory part of almost all DSLs; however, op-

timisation and parallelisation do not play a vital role in the framework DSL.

118

6.3. DLS Implementation Phase and Patterns

Compiler and interpreters are more appropriate in DSL projects with a large

number of users, whereas, the community user of the framework is restricted

due to the nature of security policy languages. Hence, the compiler and inter-

preter are not a prime implementation choice for this research.

• Preprocessor: Pre-processors could have been a good DSL pattern for this

project, but due to the fact that error reporting is postponed to the compilation

time, this would impose a threat to the efficiency of the DSL. Ideally, the

users would be provided with the possible errors that have been made before

the compilation time.

• Source-to-Source Transformation / Pipeline: Source-to-Source transfor-

mation and pipeline processes do not fit in the context of this research, as

A) a source code for the DSL is not available and B) due to the nature of the

scenarios described by security policy languages, pipeline is not an effective

implementation approach; therefore, none of the above patterns can be easily

adopted in the implementation phase.

• Language Extension / COTS: Language extension has already been ruled

out in the previous section. Moreover, the efforts this pattern requires do not

fit within the project plan, thus, language extension is not appropriate. The

COTS pattern could have been a suitable approach for this project, but consid-

ering the scope of the project, COTS and especially the MDE approach could

not only over engineer the entire plan, but it is also not justified financially.

By ruling out the patterns that do not fit in the context of this research, the

embedding approach remained the only available option. A diagram that illustrates

the sequence of steps to choose an implementation pattern has been presented in

Figure 6.1.

119

6.3. DLS Implementation Phase and Patterns

�

���

���

���

���

����

����

����

������

����	
���

�������

����������������

������������

��������

�������������

��������

�������

����������

�������

��	
���
���

���
����

����������

��

���
	��	���

����

���������������

��������

�����������������

��������

������ ���!�

��������

���

Figure 6.1: How to Choose a DSL Implementation Pattern

6.3.5 Exploring Embedding Pattern

Since the embedding pattern is the desired approach, the thesis will review this

pattern in more detail. Technically, there are only two sub-patterns available to

implement DSLs using the embedding pattern: Internal and External. Any other

sub-patterns are effectively another flavour of these two patterns [87]. Despite the

availability of only two patterns, choosing the right implementation is not a simple

task. These two patterns are described below briefly.

120

6.3. DLS Implementation Phase and Patterns

• Internal DSLs are particular ways of using a host language to lend the host

language, the feel of a particular language. This approach has recently been

popularised by most JVM functional languages such as, Ruby [144], Groovy

[109] or Clojure [96]. A. Internal DSLs are also referred to as Embedded

DSLs or Fluent Interfaces. This pattern is the corresponding implementation

of the piggyback design pattern.

• External DSLs External DSLs have their own custom syntax and the devel-

oper must write a full parser to process them. There is a very strong tradition

of doing this in the Unix community. Many XML configurations have ended

up as external DSLs, although XMLs syntax is not suited to this purpose.

Despite the fact that the development of a external DSL must start on imple-

mentation of a full down parser, due to the evolution of JVM-based languages,

like Scala or even .Net languages like C#, currently developers are provided

with a full parser for free and as a result, external DSLs could also be hosted

on top of an existing language like internal DSLs. External DSL development

on top of an existing host language corresponds to the language specialisation

design pattern.

To summarise the embedding pattern, the advantages are discussed below:

• Host language infrastructure that includes development and debugging envi-

ronments i.e. editors, debuggers, tracers, profilers, etc. can be reused, which

in turn would reduce project effort and costs.

• Project learning curves would be significantly lower compared to other ap-

proaches because DSL developers are most likely familiar with the host lan-

guage.

• It often produces a more powerful language than other methods since many

features are available for free.

Embedding pattern comes with its own challenges which include issues such as:

121

6.3. DLS Implementation Phase and Patterns

• Expressing DSL syntax using a user-defined abstract data-type written in the

host language is not always easy making syntax optimisation hard to achieve.

• Error reporting and error handling is a challenging process in this pattern, as

errors and corresponding messages generated for the host language are not

easily presentable in a DSL [94].

Internal DSL Implementation Patterns

Internal DSLs patterns themselves can also be classified into different categories.

For instance, Debasish divided internal DSLs into two different categories of Em-

bedded and Generative DSLs [94].

• Embedded DSL: In this pattern, the DSL is surrounded entirely by the host

language and DSL is embedded deeply inside the host language. Using this

pattern, the DSL will be developed in the host language and represented to

the DSL user as an entirely new language. There are a number of common

approaches which can be used on this specific pattern namely:

– Smart API: Using builders pattern [91], DSL can be developed by cod-

ing a series of smart or fluent APIs which can be glued together in a

natural sequence. As an example, please look at listing 5.1, which pro-

vides an example of a smart API written in Java:

BigInt Interest = new Interest.Builder()

.forClient("TheClient")

.atDate(today())

.atInterestRate(0.5) ;

Listing 6.1: Smart API Example in Java

Although the code is readable and has a relatively good level of expres-

siveness, it utilises a great degree of unnecessary parentheses, dots and

Java syntax, which may not be useful to the actual DSL user. In addi-

tion, using this pattern could lead to the development of lots of small

122

6.3. DLS Implementation Phase and Patterns

methods that may not have any use on their own. Besides, smart API

that imposes unnecessary parentheses, dots and Java syntax to its users

might not be the prime choice for describing complicated security policy

scenarios that come with too many conditions and obligations.

– Reflective MetaProgramming: Developing a DSL is not always as

easy as the above example. There are scenarios that a DSL must take

action based on the information received during runtime. By combina-

tion of decorative pattern [91] and writing the code in a GPL this would

be achievable through Reflective MetaProgramming. In addition to that,

using Duck Typing that is provided by languages such as, Groovy, object

would be able to decide which method to invoke during runtime without

any inheritance forced by languages like Java.

– Typed Embedding: Through Meta-Programming, DSL coders must

precisely write the interfaces based on the rules that the domain en-

forces. However, in more complex DSL, statically typed language such

as Scala [127] could help developers. Using statically typed languages

DSL coders would be able to define different characteristics of a do-

main as aType and expose the users in an appropriate manner in order to

model the domain.

• Generative DSL Patterns: Unlike Embedded DSL pattern, where the DSL

is embedded deeply into the host language, through generative DSL pattern

utilising a generic code and /or configuration files, a great portion of DSL

code gets generated either through the compile time or runtime.

– Runtime Meta-Programming. There are languages available which

expose their runtime infrastructure as meta-objects to their users. Ruby

and Groovy can be presented as an example of host languages with Run-

time Meta-Programming capability.

– Compile-Time Meta-Programming. Very similar to Runtime Meta-

Programming by practising Compile-Time Meta-Programming approach,

123

6.3. DLS Implementation Phase and Patterns

a user interacts with the compiler during the compilation phase to gen-

erate the code. LISP is the pioneer in this category. Clojure is another

JVM based language which has been invented in a manner that provides

the same level of syntax that LISP provides, while it can easily integrate

with Java and JVM based languages.

External DSL Implementation Patterns

Unlike internal DSLs, there are not many patterns available for external DSLs sim-

ply because everything must be implemented from scratch. Despite that, in an archi-

tectural respect regarding external DSLs, a DSL consists of a script and a black-box

which is responsible for parsing the scripts and acting accordingly. The way that

the DSL developers structure the black-box can identify the pattern they have used

to implement the DSL. The main and most important component of the black box is

the parser. This paper will explore the different types of parsers that can be utilised

and integrated into a project.

Parsers : The first and the most important component of the external DSL is

a parser. In order to develop a parser, two main activities need to be performed

beforehand:

A) A context-free grammar for the DSL should be noted. There are two techniques

which can be adopted to achieve this: Backus Normal Form [43] or Van Wi-

jngaarden [108]. BNF grammar or any of its derivatives are used in almost all

modern parsers. Van Wijngaarden was defined and used in the development of

Algol68 [130].

B) Code the parser in accordance to the rules dictated by the grammar.

Unfortunately, writing a parser from scratch for a DSL is a time-consuming

process as every single detail of the DSL grammar must be coded deeply into the

host language. As a result, using a highly configurable parser like ANTLR [129]

124

6.3. DLS Implementation Phase and Patterns

and configuring it for a specific projects requirements is recommended by experts.

Even though there is a list of parsers available to choose from, each comes with

specific characteristics that must be known to the users before utilising them in

their projects. A brief description of these characteristics has been listed here:

• Top-Down Parsers: These are the parsers that start parsing the tree of objects

from the top and parse the branches and leaves by first parsing the leftmost

derivation of the input stream. While the parser recursively traverses across

the tree, it has two choices for processing the tree:

A) To parse the tokens (leaves) left to right and to Look-ahead only one

token. These parsers are called LL(1) parsers, which are usually simple

and easy to use. The simplicity of the parsers would imply that they

come with their very own issues.

B) To parse the tokens (leaves) Left to right and to Look-ahead and fetch

k tokens. These parsers are called LL(k) parsers. These are advanced

parsers which can be used in a wide range of scenarios. These parsers

can be extended to memorising parsers or predicated parsers. The ANTLR

belongs to LL(k) Top-down parser group.

• Bottom-Up Parsers: As the name suggests, Bottom-Up Parsers start their

processes from the leaves and end it on the root. An LR(k) parser is consid-

ered the most efficient bottom-up parser[94].

Utilising a parser, whether it is top-down or bottom-up is not the only task in-

volved in implementing an external DSL, but choosing the right and appropriate

parser for an external DSL is the most important decision that must be made. Con-

sidering this, it seems there is now enough information available regarding DSL

implementation patterns to choose the most suitable one.

125

6.3. DLS Implementation Phase and Patterns

6.3.6 Internal or External DSL

When it comes to software design, no universally applicable choice is available.

Each different approach can be justified individually, as each has its own advan-

tages and disadvantages. The DSL embedding design and development is not an

exception.

In the approach to designing the framework, the external DSL design pattern

was chosen. This is justified as follows:

A) Expressiveness: Although the scenarios that are covered by security policy

languages are limited, each can become extremely complicated. As a result, the

DSL should be flexible enough to cope with such requirements. Taking that into

account, internal DSLs may not be a good approach simply because exposing

a limited level of the functionality of the host language to DSL users while

covering a complicated scenario may not be easily achievable using internal

DSLs. As mentioned, usually in such scenarios, the expressiveness of DSL is

compromised.

B) Lack of Codebase: Internal DSLs are often used in scenarios where infrastruc-

ture and the knowledge base of a system exist; hence, the DSL can reuse the

majority of the existing code and/or infrastructure. The DSLs that are usually

written to engage domain experts to test the software in a DDD approach are

one example. Although the security policy languages will play an important

role in this framework, their codebase is not reused in the framework.

C) Design Freedom: In this framework, a new abstract language will be designed.

Such a language would be a standard security policy language, which will work

on top of the framework; thus, the language will need to be tailored in such a

way that it is more appropriate to this project. Such a luxury is not available

when internal DSLs are in use.

126

6.4. External DSL Implementation

6.4 External DSL Implementation

In the previous section, DSLs were reviewed from different perspectives in detail,

including the DSL concepts, advantages and disadvantage, different phases needed

for DSL design, appropriate DSL implementation patterns in accordance to this

project and the decision to use an external DSL pattern for the framework. In this

section, various external DSL implementation patterns are discussed in detail.

6.4.1 Anatomy of External DSL

External DSL design and implementation lifecycle follows the exact lifecycle of a

GPL. Similar to a GPL, an external DSL should receive textual input from the user,

parse and tokenise the input and eventually process the tokenised input based on

predefined business rules, which are known to the language. Figure 6.2 provides

simple illustration of the steps taken by an external DSL.

Assuming that implementation of an external DSL is desired, the parser of DSL,

which plays a significant role in an external DSL implementation, can be developed

using a pattern-matching technique. In very simple scenarios, parser output can

directly be fed into business rules and be processed without further manipulation;

however, in a majority of cases and certainly in the context of this research, the

parsed input must be modelled in a more formal way. Taking the similarity of

GPLs and external DSLs into account, the same technique used by GPLs, which is

Abstract Syntax Tree (AST), is used to model the parsed input script.

127

6.4. External DSL Implementation

� ���������	�

����������	
�����

���������	�
�����

�
��	������
��

���	�����	
���	���

��	���������	���

Figure 6.2: Architectural Overview of External DSL

An abstract syntax tree or just syntax tree, is a tree representation of the abstract

syntactic structure of a source code written in a programming language. Each node

of the tree denotes a construct occurring in the source code. The syntax is abstract

and does not represent every detail appearing in the real syntax. The AST identifies

the structural representation of the language in a form that is independent of the

language syntax. Depending on the usage intention of AST, it is possible to use

AST expansion, with additional information such as object types, annotations and

other contextual notes, in the next stage of processing.

While working on an external DSL, enrichment of AST, which results in a se-

mantic model for the domain, plays a vital role in DSL implementation. In reality,

the semantic model is a data structure that is enhanced with domain semantics after

the DSL input (i.e. DSL scripts) are processed through the pipeline. Its structure is

independent of the DSL syntax and is more aligned to the application model of the

system. The semantic model would be responsible for decoupling the input syntax-

oriented scripting structure of the DSL from the target actions, as shown in Figure

6.3.

128

6.4. External DSL Implementation

In addition to the above, a well-designed semantic model of DSL would result

in a better testable DSL in its life-cycle.

�

���������	�

����	������

�����	������

�����������

�����
����	���

�������	�
����	���

��������	

����

����	���

����

��������

	�
����������

�

�

Figure 6.3: Boundaries of Semantic Model in External DSL

Semantic model, as described above, is not exclusive to external DSLs. In fact,

both internal and external DSLs use a semantic model. In internal DSLs, the host

language parser would be responsible for populating the semantic model, whereas

in external DSLs, the developer would be responsible for providing the DSL with a

parser to parse and process the DSL script and populate the semantic model [94].

6.4.2 External DSL Implementation Patterns in Details

Depending on the nature of the DSL and the parser that is used to design the DSL,

the external DSL implementation could vary. In addition, different people cat-

egorise external DSL implementations using different approaches. For instance

Fowler [87] categorises external DSL patterns based on the techniques which are

used in implementation while Debishesh [94] prefers to categorise them based on

their commonality. A brief description of these patterns is presented as follows:

129

6.4. External DSL Implementation

• Context-Driven String Manipulation: In this approach, a simple DSL script,

which cannot easily fit in any programming language (perhaps in order to use

an internal DSL implementation, as opposed to an external DSL), is parsed

by the parser and fed into an application depending on the type of the script

(delimiter or syntax-directed translation). In the delimiter-directed approach,

a delimiter, such as end-of-line or end-of-file, will be used to parse the script.

Whereas when using a syntax-delimited approach, a grammar (hierarchical

structure) with multiple levels of context must be defined beforehand, which

must be agreed upon and approved by both DSL developers and DSL users.

Almost always when context-driven approach is used, two distinctive levels

of syntactical analysis on the DSL scripts are used, namely:

A) Lexer, which is also called tokeniser or scanner and

B) Parser, While lexer is responsible for splitting the input to the tokens,

which represent more reasonable chunks of inputs, parser is responsible

for parsing and providing more in-depth and detailed information off the

DSL script.

• DSL Workbench: To recap, during external DSL implementation, popula-

tion and enrichment of AST would be a developer’s responsibility. Taking

that into account, if there is already a system available, which is capable of

maintaining the code in form of AST, that makes the development of external

DSLs much easier and faster. In addition, using such system would enable

easier transformation, manipulation and subsequent code generation of the

populated AST. Such a system would be a DSL Workbench. Eclipse Xtext

[28] and JetBrains [8] can be presented as examples of such systems which

offer external DSL (or even GPL) development.

• Parser Generators Using BNF and EBNF: Extended Backus-Naur Form

(EBNF), which is simply an extended version of Backus-Naur Form (BNF)

[43], is used to define the grammar of a programming language (including

DSLs which typically come with strong grammars). BNF was invented to de-

130

6.4. External DSL Implementation

scribe the Algol [132] language back in 1960s [87]. BNF grammars has been

widely used since that time to describe the syntax of programming languages

that adopt context-driven string manipulation.

DSL workbench, which was reviewed above, focuses on maintaining written

code in AST form. However, there are tools available, that generate parsers

in accordance with declaration, configuration and rule specified by the devel-

oper. These rules are defined using a syntax notation that is very similar to

EBNF. Generally, rules declare the grammar of the language. YACC [105]

and ANTLR [129] are two examples.

Unlike the previous two patterns where input scripts are processed after the

parsing is finished, in parser generator pattern, certain actions can be defined

to be embedded into the final production of the parser code. Such actions will

be triggered when certain patterns are matched by the parser.

• Parser Combinators. Working with embedded DSL code in the parser and

defining the grammar using EBNF type meta-programming cannot be cate-

gorised as the most appropriate way to implement external DSL codes.

Modern languages provide their users with a simple yet powerful tool, which

can be used to parse, express and define certain actions which must be taken

in accordance with the parsed script. The beauty of such an approach is that

while developers are in charge of generating the parser, they can simply per-

form the task by utilising the host language artifacts like classes, functions,

methods etc. Not to mention, they can achieve this using their favourite de-

velopment kit (as opposed to EBNF), which, in turn, make them more com-

fortable. Scala and C# both provide their users with parser combinators.

Certainly not every ASPL script that will be written for the framework are sim-

ple enough to fit into the Context-Driven String Manipulation pattern, hence this

pattern cannot be used for the framework. In the next chapter, implementation starts

by combining the Workbench and Parser generators using BNF and EBNF patterns.

This will be explained in details.

131

6.5. Choosing a Programming Language

6.5 Choosing a Programming Language

Irrespective of the DSL implementation approach, the development phase must be

started by coding in one programming language. However, choosing the correct

programming language was another challenge in this research. Even though most

of the available programming languages are sufficiently mature enough to satisfy a

developer in the beginning stages, the variety of these languages makes it difficult

to choose the right one.

In the beginning, it was clear that an external DSL would be created from the

outset. Such a decision had a direct impact on the available and shortlisted pro-

gramming languages which are capable of providing the tools for external DSL

development. Further research in this area revealed that the majority of modern

Java Virtual Machine (JVM) based languages are currently capable of developing

internal and external languages. However, .Net languages did not lose the battle

and remained neck and neck with JVM-based languages. For instance, the Irony

[133] framework is a parser generator framework for language implementation on

the .Net platform that can be easily compared to parser generators, which are pro-

vided by other powerful JVM languages like Scala. Admittedly, in addition to the

above criteria and facts, the knowledge base of the research team had an impact on

the language selected and diverted it to the JVM based languages.

Deciding between JVM-based or .Net languages was the least of problems that

the research had to overcome. A simple search shows that the majority of JVM-

languages (that was chosen as the base of programming language) are capable of

developing internal and external DSLs. Debasish, for instance, compares Clojure,

JRuby (or better said Ruby), Java and Scala in [94]. So the research had to ex-

plore various aspects, such as, which programming language is faster, comes with

less memory access footprint (to help the recursion) etc. As the result a number

of non-Java JVM-based languages papers were reviewed [136] [137]. Due to the

fast growth of these languages, most of these reports are out-dated. Out of those

comparisons, the comparison provided by Wing Hang Li et al. [117] fits perfectly

132

6.5. Choosing a Programming Language

within the context of this research.

They examined four non-Java JVM languages and used exploratory data anal-

ysis techniques [147] to investigate differences between these languages (in their

dynamic behaviour) to Java. They analysed a variety of programmes and their be-

haviour to draw distinctions between the different programming languages. The

languages they compared are widely chosen in DSL implementations and they are:

• Clojure: Clojure [96] is a LISP dialect, with support for advanced concur-

rency features, including actors and software transactional memory. It is a

functional language with dynamic typing.

• JRuby: JRuby [18] is a Java-based implementation of the Ruby [144] pro-

gramming language. It is a dynamic, object-oriented language.

• Jython: Jython [19] is an implementation of the Python language for the Java

platform. It is a dynamic, object-oriented language.

• Scala: Scala [127] is a functional and object-oriented programming language,

with a static typing discipline. It has advanced facilities for typing and con-

currency.

Figure 6.4 shows the data analysis techniques they applied to gain an under-

standing of the dynamic behaviour of the various programmes and languages.

133

6.5. Choosing a Programming Language

Figure 6.4: Schematic Diagram of Profiling Data Generation [117]

In this figure :

• N-gram Models: An N-gram is a sequence of N consecutive JVM byte-code

instructions within a single basic block. The authors considered the coverage

of observed N-grams in relation to the theoretical maximum.

• Principal Component Analysis (PCA): Principal Component Analysis is a

frequently used technique for dimension reduction, to aid visualisation and

comprehension. PCA works by choosing and combining dimensions that

contain the greatest variance. For each individual benchmark program, in

their report, the authors measure the relative frequency of each JVM byte-

code instruction to produce a 198-vector of values in the range [0-1] or a

39204-vector of values for 2-grams.

Boxplots, which is a convenient method of graphically depicting groups of nu-

merical data through their quartiles [3], have been used to summarise the distribu-

tions of data for measurements on methods and objects. In addition, the authors

have used Heat Maps to compare object lifetimes between the JVM languages.

134

6.5. Choosing a Programming Language

By performing static analysis on the language libraries and dynamic analysis on

a set of 75 benchmarks written in those languages and by using the above analysis

approach, they compared these languages at three levels, namely: instruction-level,

method-level and object-level, in details. They also provided users with their results.

All of their results are provided in Appendix C.

Finally, by studying the obtained results and comparing them with the other

related works, they concluded their results as follows:

• Instruction Level: At the instruction-level, non-Java benchmarks produce

N-grams not found within the Java benchmarks, suggesting they do not share

precisely the same instruction-level vocabulary as Java.

• Method Level: At the method-level, they have found Scala, in particular,

has much smaller methods than the other JVM languages. Both Clojure

and Scala applications exhibit deeper stack depths than other JVM language

benchmarks.

• Object Level: At the object-level, lifetimes of non-Java JVM languages are

generally shorter compared to Java. Especially on Clojure and Scala, object

sizes are smaller compared to Java. Finally, Wing Hang Li observed that

non-Java languages use more boxed primitive types than Java.

Although that there is no clear winner in this report, it seems that Clojure and

Scala are better performers and more enhanced among JVM-based languages, ac-

cording to the Wing Hang Li benchmarking. Considering this, these two lan-

guages were compared from different angles, demonstrating that Scala provides

much richer classes compared to Clojure, which is really limited in many ways. For

instance, Scala provides a wide range of arrays and primitives, but what Clojure

provides is not even close. Most importantly, the speeds of these two languages al-

most touch the two extremes. While Scala runs as fast as Java, Cojure users always

complain about its speed [4]. There is another fact that also remains, which turns

the table in Scala’s favour. Scala provides with a parser combinator, but this is not

135

6.6. Summary

the case for Clojure. In the context of this research, this is an important fact, as it

may be necessary to design the external DSL based on the parser combinators. Due

to this, and all the other facts provided above, it was decided to use Scala as the

programming language.

6.6 Summary

6.6.1 Chapter Summary

In this chapter, different aspects of DSL design have been rigorously looked at.

The chapter started with a definition of DSL and expanded that to DSLs structure,

identified DSL stakeholders and its boundaries and continued the discussion with

the advantages and disadvantages of DSLs.

In second half of the chapter, the different phases of DSL design and develop-

ment were identified and reviewed step-by-step. The chapter concluded by carefully

exploring different DSL implementations and choosing the one that fits best in the

context of this research.

6.6.2 Research Contributions of the Chapter

Although Fowler refers to DSLs as a new name for an old idea [87], the number of

resources available in this specific arena is really limited and there are no authori-

tative documents available to demonstrate how the different stages of DSL design

and development could and should be applied to a real world scenario.

Throughout this research, as an additional contribution, it has been demon-

strated how different patterns of design and development can be adapted for a real

world DSL development scenario. In particular, in embedded DSL development,

which is currently considered a favourite DSL development approach, the lack of

a step-by-step guide to show which of the two flavours of this pattern (internal and

136

6.6. Summary

external DSL development) should be adopted, is noticeable. This chapter shows

how the requirements of a project could come to the rescue, to answer the most

difficult question of embedded DSL development.

In addition, while a wide range of mature, well-documented and well-supported

programming languages with a spectrum of functionalities are available, there is

no black and white guideline that exists to explain which programming language

to choose for a DSL development. In this chapter, an easy method to illustrate

how to shortlist and filter the programming languages for DSL development, was

discussed.

137

Chapter 7

Implementation of the Framework

In this chapter, the research presents:

• The chosen methodology for the framework development,

• The framework requirements,

• The high level design of the framework,

• The framework iteration through low level deigns of the framework,

• Testing and evaluation of the framework,

• The research contributions of the chapter.

7.1 Software Methodology

The very first step that must be taken in almost all software development projects is

to choose an appropriate software development methodology. There are a number of

software methodologies that a project can utilise, the following list can be presented

as a subset:

138

7.1. Software Methodology

• Agile

• Extreme Programming

• Test driven Development

• Quick and Dirty

• KISS

Each of these methodologies comes with their own characteristics, advantages

and disadvantages. Out of the reviewed software methodologies, Agile has been

chosen for the development of the framework. The decision made can be justified

as follows:

• User Involvement: The fundamental of the Agile development is to give

the customer the highest priority. As a result, the customer is involved at

almost every step of the software development process, which results in a

more promising product at the end of the development phase. As the main

goal of a DSL in mind, that is providing an abstract language to a client,

Agile development would be a perfect match for DSL development [88].

• Cost: Cost is always an issue in the software development process. In addi-

tion, this imposes even more constraints on an academic project. Involvement

of the user in the early stages of the project implies smaller iterative changes

at early steps of the project. That prevents fundamental changes at the end of

the project, which could lead to unacceptable costs.

• Defect-Less Development: Traditional software development provides a soft-

ware to the client at the end of the software development process that must go

through the evaluation process and discover system defects. However, user

participation during Agile development suggests that the number of defects

found at the end of the development phase would be minimal.

• Shorter Development Cycle: Involvement of the end user in the software de-

velopment process also ensures an even faster software development process.

139

7.2. System Requirements

This becomes more visible when the system becomes ready for an overall test

and evaluation by the client.

• Size of the Project: Agile development may not be a prime choice for a dis-

tributed, multi-site or large-scale development team (although there are tech-

niques that can be applied to adapt even those projects with Agile develop-

ment). The small size of the present research development team also suggests

that Agile development could be considered the best software methodology

that can be adopted.

7.2 System Requirements

So far, it has been mathematically proven that the implementation of the framework

would work. In addition, an appropriate design and implementation method has

been chosen. However, the implementation phase cannot be started before a set of

detailed requirements for the system is defined. Such requirements could techni-

cally shape the implementation from the outset.

The requirements of the framework as the base for the system architecture

should ideally combine the advantages of various DSL implementation approaches,

to make it applicable to a large number of DSL scenarios. These properties (a num-

ber of them already reviewed in previous chapters) have been identified as follows.

These properties will be used to evaluate the approach and the framework towards

end of the project.

• To Reuse Host Language Infrastructure: The necessity of this property

seems obvious and can be considered as a must have on a majority if not all

embedded DSL implementations. The property includes but is not limited to

syntax, semantics and tools available for the host language.

• To Provide Well-Formed Measurements: Providing a measurement tool

to check the validity of DSL scripts against both syntactical (accordance to

140

7.2. System Requirements

grammar) and contextual (e.g. scoping rules) restrictions would guarantee a

well-formed and valid policy as an outcome.

• Modular Semantics: Designing the DSL using modular semantics would

make it possible to benefit from reusable components that can be composed

with other semantics [102].

• To Implement a High Performance System: The property also can be con-

sidered as an obvious requirement, as this is a must have requirement for

almost all computerised applications.

• To Minimise Development Efforts: It cannot be emphasised enough that

the development of a DSL is an expensive task. Not to mention that it has

been decided to develop an external DSL for the policy framework with a

relatively more complicated development cycle compared to the internal DSL

development. Hence, the development of reusable modules, with the aim of

minimising efforts, is considered a vital requirement for the system.

In addition, it would be cost-effective if a level of automation were integrated

into the design. Model Driven Software Factories [70] (also known as Soft-

ware Workbenches [85]), which are described as a tool for Model Driven

Engineering, can be presented as an example. Software Model Driven Engi-

neering, MDE, aims to raise the level of abstraction in program specification

and increase automation in program development. The idea promoted by

MDE is to use models at different levels of abstraction for developing sys-

tems, thereby raising the level of abstraction in program specification. An

increase of automation in program development is reached using executable

model transformations. Higher-level models are transformed into lower level

models until the model can be made executable, using either code generation

or model interpretation [72].

• To Have Expandability: Expandability is the most desired feature of almost

all computerised systems and is usually requested by users. The framework of

the current research is not an exception. Knowing the fact that the framework

141

7.2. System Requirements

will be prototyped for only candidate languages implies expandability of the

system is almost inevitable. The design should allow other policy languages

to be able to use and modify the system. More importantly, any expandability

of the system, with regards to adding new security policy languages to the

framework, most likely comes with a level of change in the grammar of the

DSL. Hence the grammar of the DSL also must be designed with the expand-

ability and flexibility in mind.

Although it may not be directly related to expandability of the system, the

design of the framework would preferably need to follow the loose coupling

approach. Loose coupling is an approach to interconnecting the components

in a computer based system design so that those components, also called el-

ements, depend on each other to the least extent practicable. The goal of a

loose coupling architecture is to reduce the risk that a change made within

one element will create unanticipated changes within other elements [135].

• To Present User-Friendly User Interface: The revelation of smartphones

and apps in recent years has exponentially raised the expectation of ordinary

users. Users often expect a clean and simple user interface which executes

their desired action(s). Simplicity in the user interface must play a significant

role in the design of framework.

• Security of the System: The other requirement that could impact the frame-

work design is the fact that the final product must work on a secured domain.

In other words, the framework, which sits next to the policy servers inside a

controlled and secured domain, should be designed in a way that imposes the

minimum security risk on the surrounding domains.

Having gone through the system requirements implies that the other stages of

implementation can be started. High Level Design (HLD) (Architecture) would be

the one to start with and then the discussion can be expanded to Low Level Design

(LLD).

142

7.3. High Level Design

7.3 High Level Design

A HLD provides an overview of a solution, platform, system, product, service or

process. Such an overview is important in a development project to ensure that

each supporting component design will be compatible with its neighbouring com-

ponents’ designs.

The HLD also briefly describes all platforms, systems, products, services and

processes that it depends upon and includes any important changes that need to be

made. Typically HLD document would also include an High Level Architecture

(HLA) diagram visualising the components, interfaces and networks that need to be

further specified or developed [14].

With the HLD in mind, the HLA of the system can be proposed as detailed in

Figure 7.1. In this Figure, there are several components that are interacting with

each other, a list of these documents, their responsibilities and brief descriptions are

listed in the next section.

7.3.1 High Level Architecture of the Framework

One of the core requirements of the system is to minimise development efforts. As a

result, it has been decided to build the framework by utilising MDA. The discussion

on the system components continues by briefly reviewing the components that have

been used in the proposed architecture.

Eclipse

Initially originated from IBM VisualAge [36] code-base, Eclipse, which is an open

source Integrated Development Environment (IDE), has been used during the soft-

ware development phase of the current research. It contains a base workspace and

an extendable plug-in system for customising the environment. Written mostly in

Java, Eclipse can be used to develop Java applications. Eclipse may also be used to

143

7.3. High Level Design

�

��������	�

��������	
	�����

��������	
	�����

�

��������	
	�����

�

��������	�
���

�

�

������������

�

���������
���

����

�

�

�

��������	
�������

������
���

���������	��

�
�������	��

����������������������

��������������������
����

������������

��������������������������

���������������������

������������

�����������������������������

���������������������

Figure 7.1: The Proposed HLA of the Framework

144

7.3. High Level Design

develop applications in other programming languages by utilising necessary plug-

ins.

The Eclipse Software Development Kit (SDK), which includes the Java develop-

ment tools, is meant to be for Java developers; however, users can extend its abilities

by installing plug-ins written for the Eclipse platform, such as development toolkits

for other programming languages and can write and contribute their own plug-in

modules.

Eclipse employs plug-ins in order to provide all of its functionality on top of

(and including) the rich client platform. This plug-in mechanism is a lightweight

software framework. The plug-in architecture supports writing any desired exten-

sion to the environment. The key to the seamless integration of tools with Eclipse

is the plug-in. With the exception of a small run-time kernel, everything in Eclipse

is a plug-in [11].

EMF / EMF(Core)

The Eclipse Modelling Framework (EMF) project is a modelling framework and

code generation facility for building tools and other applications based on a struc-

tured data model. From a model specification described in XML, EMF provides

tools and runtime support to produce a set of Java classes for the model, along

with a set of adaptor classes that enable viewing and command-based editing of the

model and a basic editor.

EMF consists of three fundamental pieces:

• EMF(Core): The core EMF framework includes a meta model, which is

called ECore and is used for describing models and providing run-time sup-

port for the models. That includes change notification, persistence support

with default XMI serialisation and a very efficient reflective API for manipu-

lating EMF objects.

• EMF(Edit): The EMF (Edit) framework includes generic reusable classes

145

7.3. High Level Design

for building editors for EMF models.

• EMF(Codegen): The EMF code generation facility is capable of generating

everything needed to build a complete editor for an EMF model. It includes a

user interface from which generation options can be specified and generators

can be invoked. The generation facility takes advantage of the Java Develop-

ment Tooling (JDT) component of Eclipse [10].

Xtext

While external DSL implementation patterns, to be more specific, DSL benchmark-

ing, were reviewed, Xtext was briefly introduced. Due to the ease of use and flex-

ibility of Xtext, it is one of the most used products developed and provided by

openArchitectureWare (oAW), which is a leading provider of tools utilising MDA

approach. Xtext is heavily dependent on EMFCore.

In summary, Xtext is a framework for the development of programming lan-

guages. It covers all aspects of a complete language infrastructure, from parsers,

over linker, compiler, or interpreter to fully-blown IDE integration. It comes with

good defaults for all these aspects, and at the same time, every single aspect can

be tailored to the users’ needs. At the core of Xtext, there is a workflow engine al-

lowing the definition of generator/transformation workflows. A number of pre-built

workflow components can be used for reading and instantiating models, checking

them for constraint violations, transforming them into other models and then finally,

for generating code [28].

In conclusion, based on an EBNF-like notation, Xtext generates the following

artifacts:

• A parser that can read the textual syntax and returns an EMF-based AST

(model).

• A set of AST classes represented as an EMF-based meta-model.

• A number of helper artifacts to embed the parser in an oAW workflow.

146

7.3. High Level Design

• An Eclipse editor that provides syntax highlighting, code completion, code

folding, a configurable outline view and static error checking for the given

syntax [77].

Xpand

Xpand is another subject that was also briefly reviewed while reviewing code gen-

erators in the previous chapter, under the DSL benchmarking section. Summed

up briefly, in an MDA approach with the aim of consistency across the domain, at

some point, the populated model must be transformed and synced with different

project-specific artifacts like source code. This would be the responsibility of the

generators. In addition, refactoring, specialisation and annotation also can be done

using generators.

Since Xtext populates an AST based meta-model, a generator to produce codes

on-the-fly and easily integrate with Xtext was needed. The other criteria that had to

be considered was that Scala was chosen as the programming language, therefore,

the generator should be capable of generating Scala code on-the-fly.

There was only one code generator option available to choose from: Oitok.

Oitok was the only known generator that was capable of generating Scala code by

transforming an AST-based model. Unfortunately, integration of Oitok into Xtext

was not easy and resulted in many problems. It was then decided to replace it

with another generator. Since using a non-Scala based code generator was the only

choice available, it was decided to choose a Java-based generator with the aim to

integrate the generated Java code to Scala-based framework project. As the result,

it has been decided to choose a well-known generator that comes with a good repu-

tation amongst developers; Xpand.

Xpand is a statically-typed template language featuring the following:

• Polymorphic template invocation.

• Aspect oriented programming.

147

7.3. High Level Design

• Functional extensions.

• A flexible type system abstraction.

• Model transformation.

• Model validation.

It includes an editor, which provides features that are handy when it comes to

DSL development. A short list of these features are as follows:

• Syntax colouring.

• Error highlighting.

• Navigation.

• Refactoring.

• Code completion.

Similar to Xtext, Xpand was also developed as part of the OpenArchitecture-

Ware project, before it became a component under Eclipse [9].

Dependency Injection

By definition, Dependency Injection (DI) is a software design pattern in which one

or more dependencies are injected into a dependent object and are made part of the

client’s state. The pattern separates the creation of a client’s dependencies from its

own behaviour, which allows program designs to be loosely coupled [86].

The main advantage of DI is loosely coupling the various parts of the application

to each other. In the context of this research, there are numbers of places where

utilising such a functionality would become useful.

148

7.3. High Level Design

• Dependency injection allows a client to remove all knowledge of a concrete

implementation that it needs to use. This specific characteristic of DI helps

different parts of the framework to remain isolated and protected from the

impact of design changes. This indeed, in turn, meets the modularity and

reusability requirements of the system.

• Dependency injection can be used to externalise a system’s configuration de-

tails into configuration files. Knowing the fact that different code generators

would eventually use the system, each of which come with their own con-

figuration, this specific feature of DI would help individual configurations

for different security policy language implementation to be written indepen-

dently.

7.3.2 HLA Components

The HLA components can be described in details as follows. Starting from the top,

these components can be seen in the diagram:

A) System Administrator: Refers to the person responsible for reading the secu-

rity policy written by the security officer (please refer to Section 2.1) and trans-

lating it to a security policy written in the abstract language known as DSL. The

administrator would need to interact with the system. This could be done via an

editor, IDE or even a browser.

B) System UI: A system UI is a user interface that allows a system administrator to

communicate with the system. The UI could utilise a variety of products from

a simple text editor to a sophisticated IDE running on an smartphone.

C) Concrete DSL: This represents the concrete semantic model of the DSL. Typ-

ically these are the DSL objects/classes that textually model the DSL (in terms

of programming). Policy generators will use the model during the next stages

of DSL transformation.

149

7.3. High Level Design

D) DSL Properties: These represent the DSL specific configuration files that shape

the DSL, such as DSL grammar and DSL configuration files. These properties

are used by the framework to manage the DSL during runtime.

E) Framework API: In order to loosely couple the language specific part of the

policy framework from the core model of the framework, this component has

been used. The API is used to connect the external policy generators/UI to the

DSL framework.

F) Policy Generators: Policy generators are stand-alone pieces of code that are

responsible for generating security policy code (script), written in specific se-

curity policy languages. These codes are generated based on the concrete DSL

(i.e. the parsed model of the DSL) in accordance of the rules imposed and en-

forced by DSL meta-models (configurations). Output of these units will be fed

directly to security policy servers i.e. PAP (cf. Section 2.3 for more details)

G) DSL Developer: This refers to developers who are responsible for maintaining

the DSL framework as an independent, abstract code that is capable of parsing

the DSL scripts and semantically modelling the DSL in accordance with the

enforced rules and grammar.

H) Back-end Developer: This represents those developers who are responsible for

producing policy generators that are capable of analysing the modelled DSL

(based on the DSL concretes) and generating the language specific security pol-

icy code. A DSL developer and back-end developer must work in collabora-

tion, as sometimes plugging more security policy languages into the framework

implies manipulating the DSL grammar and meta-model accordingly. As an

example, assume that a new policy is added to the framework that provides a

feature, which is not offered by other policies. If that is the case, then the DSL

grammar must be modified in a way that incorporates the new functionality into

the system, to be used by the newly added policy language. This would require

collaboration between the back-end developer and DSL developer.

I) TMF: Textual Modelling Framework (TMF) framework represents a black box

150

7.4. Low Level Design

that reads the input DSL scripts and provide users with a model. The black box

consists of the following internal components:

• Meta-Model Abstraction Layer: This represents a meta-model of a parsed

DSL script based on the rules dictated by the DSL properties. Such a

meta-model will be used by other parts of the TMF (such as Model to text

(M2T)) to produce a fine-grained model.

• Parser Generators: This is a parser that reads the textual representation

of the model and instantiates the corresponding final model.

• AST: This stands as the representative of the final model, which is de-

scribed as the output of the TMF framework.

7.4 Low Level Design

By utilising Xtext, a low level architecture of the framework can be presented as in

Figure 7.2.

Starting from the TMF framework, which is in the middle of the framework

going outward, the following components can be identified:

1) TMF Framework: Xtext has been used as the TMF framework in this archi-

tecture. Knowing the fact that it is heavily dependent on Eclipse, the following

components have been delivered to the project without any cost, as the result of

Xtext usage. This satisfies the requirement of the framework, which necessitate

minimal development costs and efforts.

a) System UI: A feature-rich Eclipse editor (based on the Eclipse text editor

infrastructure) that is aware of the concrete syntax specified. The editor sup-

ports syntax highlighting, code completion, navigation (hyperlinks), hovers,

folding, outline, and other features known from Eclipse text editors.

151

7.4. Low Level Design

���������	
�������

���������	�
���������

������� ���	�
���������

������ ���	�
�

��������

�������������

��������	
�������
��� ���

����

����� �������

	
���

�����

��������������

�����

�
�
���
���

������������

��� !�"��

�#��$�%����

�&��'�
!!
�

&!
�"�������

������������

'�
!!
������ �� ����

�����

Figure 7.2: The Proposed Low Level Architecture of the Framework

b) Parser Generator: Xtext provides users with an ANTLR-based parser gen-

erator, which reads the input scripts and parses it based on the DSL properties

and grammar and provides users with the corresponding model.

c) Abstract Syntax Tree: As previously mentioned, Xtext utilises an ECore-

based AST. To recap, ECore is one of the main three components of the

Eclipse Modelling Framework.

d) M2T Transformer: Initially, the Oitok framework was used as code genera-

tor (Transformer) because it produced Scala-based textual representatives of

the model. Unfortunately, due to the many issues encountered during incor-

porating Oitok into Xtext, it was decided to replace it with Xpand. Xpand

produces Java classes, helpers etc. by traversing through the ECore model.

e) Xtext: Xtext sits in the middle of the architecture and plays a significant

role in design. It glues the different components of the architecture together.

Briefly put, when using Xtext, the language rules (or in case of this research,

the DSL grammar rules) first need to be defined in EBNF syntax. Xtext then

uses that and utilises ANTLR to build an ECore semantic AST model out of

152

7.4. Low Level Design

the input DSL script.

2) DSL Properties: DSL properties in this architecture consist of two parts:

a) DSL Grammar: Xtext uses an EBNF notation style for the representation

of DSL grammar.

b) DSL Configuration: There are two different types of configurations avail-

able in this architecture, global and localised configurations. Global con-

figurations are properties that are valid across the project, for instance, the

output directory of the language specific policies generated by the frame-

work. Localised configurations, however, focus on each policy generators

and their specific configurations. The naming conventions used in specific

security policy language generators is an example.

c) Dependency Injection: DI plays a significant role in the design of enter-

prise applications to make different parts of the application independent, yet

configurable from a single point of view. In order to deliver a configuration

to each individual policy generator code, the Spring Inversion of Control

(IOC) (equivalent to DI) [25] has been used.

The Spring framework provides many modules and its core has IOC con-

tainer. Spring’s IOC container is light-weight and it manages the dependency

between objects using configurations. Based on the configuration manged by

users, Spring IOC links the related objects together, instantiates and supplies

them to the code.

7.4.1 Design Review Round 1

During the design and implementation phase, a User Centric Design (UCD) ap-

proach has been adopted. The user centric design is a process that is mainly focused

on the user interface design of the system, which pays extensive attention to user’s

needs, wants and limitations of the end-users product, service or process at each

stage of the design process. The UCD may not be fully restricted to interfaces or

technologies used to develop the end user product [121].

153

7.4. Low Level Design

In order to obtain end user’s feedback, that includes system administrator and

DSL developer (please refer to Section 6.3.2.), in a more realistic and enhanced

way, PoC approach have been adopted through the implementation phase. A PoC is

a realisation of a certain method or idea to demonstrate its feasibility, whose purpose

is to verify that some concept has the potential for use. A PoC is usually small and

may or may not be complete.

Considering this, a PoC version of the design has been implemented. The prod-

uct implemented the design, which was presented in a previous section and was

made available to system administrators with the aim of obtaining their feedback.

Also, the very same PoC has been shared among DSL-developers and other inde-

pendent developers, in order to capture their points of view as well. The PoC, as

described above, is also used to demonstrate that the chosen technologies and prod-

ucts, which are closely tied together, are capable of communicating with each other

in order to produce the final result.

7.4.2 Capturing Feedback

System administrators, end users and DSL developers’ feedback have been captured

through a series of interviews, observation of behaviour and a simple questionnaire.

The results of all these activities are detailed below.

A) End User’s Point of View

Users had three major issues with the design provided, which are listed below:

1. Security Concerns: The low level design that utilises textual to model frame-

work was heavily dependent on the Eclipse platform. That implied that two

individual components had to be installed on the end users’ computers in or-

der to make the framework functional. These two component were the Java

development kit (JDK) and the Eclipse platform.

Although installing these two components take a fraction of an hour and

seemed a minor change, this raised a major concern to the end user. It

154

7.4. Low Level Design

should be noted that the framework’s end users are security administrators

of secured domains and their computer systems are sitting behind a layer of

tight protections. Although none of the above products (i.e. Java and the

Eclipse platform) considered harmful software, regardless of type and ven-

dor of a software product, installing the products in a secured domain raises

questions and will not be considered as trivial exercise.

2. Usability: Dependency of the interoperability framework was under ques-

tion, as each and every system administrator computers that wanted to use

the framework also had to install these two products (i.e., the JDK and the

Eclipse platform). Although this could be considered an acceptable ap-

proach, because only certain people would be able to access the security

policy servers. However, changing system administrator computers, per-

haps due to a fault or an upgrade, implies that the above mentioned software

needed to be installed again on those computers. Otherwise, system admin-

istrators could not manage the security servers through the framework.

3. Look and Feel: While concerns that arose above were correct and reason-

able, the main reason that the design was rejected by the end user was the

look and feel of the framework and to be more precise, the Eclipse IDE. The

Eclipse IDE is designed for development and comes with too many features,

which are all useful to main user of the IDE (i.e., developers and program-

mers). However, that is not the case for the end users of the framework, who

are non-technical individuals (in terms of programming and using IDE). The

look and feel of the Eclipse IDE was not described as user-friendly by the

users; therefore, they rejected the design concept. Figure 7.3 shows a snap-

shot of the Eclipse IDE, which was generated by the Xtext framework.

B) Developer’s Point of View

The PoC was also shared with developers. Generally, the feedback received

from experienced developers was positive, but they also questioned the user-

friendliness of the architecture. Xtext uses EBNF style grammar notation, which

dictates the overall grammar of the DSL. The developers did not welcome using

155

7.4. Low Level Design

Figure 7.3: A Snapshot of Xtext (Eclipse) Environment

such an abstract language in the design (Language Cacophony). The reason can

be presented as:

• The EBNF is effectively another language. The DSL developers should

learn and understand how to code EBNF, before they can maintain the

DSL through its evolution. The framework should be able to accept more

and more security policy languages as time goes by, hence the EBNF rules,

which shape the DSL, are subject to change and modification. That implies

that the DSL developers must know the EBNF abstract language inside

out. The learning curve would definitely have an effect on the timeline of

a project. In addition, it increases the costs of a project as the result of

extended timelines.

• Generally, developers are always open to understanding and learning new

technologies and languages. However, that may not be the case for EBNF,

as EBNF is an abstract language, with unique requirements. It is not com-

parable to a general-purpose programming language. The projects, sce-

156

7.4. Low Level Design

narios and occasions that such an abstract language can be used are only

a handful, hence, there would be no motivation for developers to learn the

language.

C) Overall Expandability of the System

In addition to using Xtext, which has been built around EBNF, there are few

other limitations:

• Initially Xtext was designed to accommodate the development of simple

languages and DSLs. Although the Xtext framework itself has been en-

hanced over the time, the above characteristic was passed down to the new

versions of Xtext. Hence, it only should be considered for development of

simple DSLs.

• The EBNF itself is inadequate for defining complex forms of grammar.

In other words, it cannot easily be used to define and enforce complex

scenarios. That could cause a major impact on the framework presented by

this research, when it comes to defining and producing complex security

policies [30]. Not to mention, the EBNF is a linear language and that may

not be a prime choice for describing security policy languages.

Due to the limitations and feedback received from end users and experienced

developers, it was decided to enhance the design by dropping Xtext and using

an alternative solution in the way that the following two requirements remain

intact:

A) The architecture of the framework should not change fundamentally and

B) The overall development costs and efforts of the framework should not in-

crease significantly.

Figure 7.4 visualises the issues raised by users, based on the framework non-

functional requirements defined in Chapter 3. A snapshot of the questioner that

have been used to capture participants’ opinion on the provided PoC is provided in

Appendix E.

157

7.5. Restructure of the Design

��

���

���

���

���

���

���

	��

��

���

�������

��������������

���������

�� !�"!��

#�$��� ���� %&������� #� �����

Figure 7.4: Percentage of Complaints/Issues Grouped by Framework Requirements

7.5 Restructure of the Design

Using Xtext in the middle of the design has helped to achieve a few system require-

ments as explained in the previous section, namely, reducing the cost by applying

an MDA design, reducing development efforts and reusing the host language infras-

tructure. However, using Xtext imposes a level of restriction and discomfort to the

end user of the framework. As a result, it was decided to use other alternatives to

replace components offered by Xtext.

Preferably, the alternative solution should also provide the two advantages of

Xtext, a low cost, low effort solution. Due to the removal of Xtext, the majority of

its components had to be rewritten from scratch. Although that could be considered

as a disadvantage of the new design, it could also add to the overall flexibility of

the framework. Such an approach would put the developers in control of the code

to the greatest extent. Rewriting these components implies the code would be more

maintainable and expandable, compared to the architecture that utilised Xtext.

158

7.5. Restructure of the Design

7.5.1 Parser Combinators

The first component (which was replaced) was the parser. Scala, as a host language,

provides a unique functionality called the Parser Combinator, which was explained

briefly in the previous chapter. In functional programming, a parser combinator is

a higher-order function, which accepts several parsers as input and returns a new

parser as output. It follows the Pipe-Line design pattern, as described in detail

in Section 5.3.3. A parser combinator provides users with a level of comfort that

includes easy construction, readable code, a modular approach, a well-structured

parser and an easily maintainable project. They have been used extensively in the

prototyping of compilers and processors for DSLs [94].

The history of parser combinators goes back to late 1980s, when R. Frost and J.

Launchbury demonstrated the use of a parser combinator to construct a natural lan-

guage interpreter in 1989 [59]. They have been in use since then and most recently,

Frost, Hafiz and Callaghan described a set of parser combinators in Haskell to solve

the long-standing problem of accommodating left recursion [90]. In Scala, parsers

are implemented as monads, hence defining combinators for parsers is just monadic

transformations, alternation or any other composition operations [93].

Using parser combinators facilitated meeting a few of the design requirements:

there was a reduction in the effort and cost of the project and reuse of the host lan-

guage infrastructure. Using a parser generator has other advantages that are detailed

below.

• Developing the framework’s parser using combinators is easy, well docu-

mented and almost comparable with Xtext with regards to cost and devel-

opment efforts.

• There are abstract data types available in Scala to generates AST using parser

combinators.

• It comes with a great pattern-matching engine, which enables dealing with

complex security policies [93].

159

7.5. Restructure of the Design

• Unlike Xtext, using a combinator does not require any extra languages to be

taught to the developers. In fact, they would be able to pick up the concept

easily, because the final product of the parser combinator would be in Scala

code.

In addition to the Parser Combinator that replaced the ANTLR-based Xtext

parser in the architecture, the following components were enhanced, replaced or

added to the HLD:

• Semantic Model: The other free component that had to be replaced, as the

result of abandoning Xtext, was the semantic model which comes with it.

Usually populating the AST-based model by Xtext happens beyond user’s

control. However, in the new system architecture, that luxury vanished and

everything had to be rewritten from the ground up.

As a result, a customised AST tree in Scala was written and joined with the

newly written and configured parser combinators, so that the AST could be

populated on-the-fly by the parser. The AST has been revolutionised through-

out the development process in order to accommodate more branches and

present a more realistic view of the parsed tree.

• User Interface: Using Xtext implies that the user would be able to use an

Eclipse editor free of charge. Although that could be considered a huge ben-

efit for using Xtext, in the case of the current research, the complexity of the

IDE increased the end user’s discomfort; therefore, in the new design, it was

decided to use an alternative solution that should preferably address a few

issues raised by the Eclipse editor:

A) The replacement solution should be simple and fit for purpose.

B) It should add to the usability of the framework.

C) The usability should not compromise the performance of the system.

In response to these requirements, it was decided that a browser would be

used in order to interact with the framework. Using http for communication

160

7.5. Restructure of the Design

with the framework would definitely increase the usability of the system and

would meet the other requirements, which are listed above. However, using

the browser implies that an embedded browser-based editor must be incor-

porated into the system. A number of browser embedded editors were re-

viewed, including CodeMirror [5], Ace [15], CodePress [120], EditArea [12]

and Ymacs [1]. After reviewing these editors in detail and considering the

functionalities provided, it was decided that Ace, a JavaScript editor, would

be an editor fit for the purpose.

Ace is a standalone JavaScript code editor that is specifically designed to

work as browser-based code editor that matches and extends the features,

usability and performance of existing native editors, such as TextMate, Vim

or Eclipse. Ace can be easily embedded in any webpage and JavaScript-based

applications.

Features and advantages of Ace editor are:

– Syntax highlighting.

– Automatic indent and out-dent.

– An optional command line.

– Can handle huge documents.

– Fully customisable key bindings including VI and Emacs modes.

– Provided with different themes to choose from.

• Syntax Provider and Validation Engine: The other two components that

have been written from the scratch are the syntax provider and the validation

engine. The syntax provider is in charge of defining the DSL syntax. The

DSL syntax orchestrates the parser combinator’s behaviour. In addition, it

was used as an input to the validation engine.

The validation engine has two distinctive responsibilities. It communicates

with syntax provider on both of the following scenarios:

161

7.5. Restructure of the Design

A) The validation engine will be used to validate and approve the parsed

DSL script in accordance with the defined grammar rules provided by

syntax provider and present users with appropriate message(s) should

the validation fail.

B) It will also be invoked by the UI to provide users with syntax errors and

or automatic code completion, while users are typing DSL scripts within

the user interface.

• Dependency Injection: We reviewed the Spring IOC previously. There are

contradictory views available on Spring IOC. Some believe that Spring IOC

is a fantastic piece of code, which helps readability, maintainability, and ex-

pandability of the system. On the other hand, some believe the opposite.

However, a majority of these two sets of reviewers believe that Spring IOC is

a heavyweight tool. Such a tool with a multitude of features, functionalities

and abilities is a must have component for enterprise and multi-level applica-

tions, but for standalone applications, Spring IOC could be considered a tool

that over-engineers the whole design.

By removing Xtext, the framework became a pure Scala project and after

reviewing the Spring IOC, a different DI for Scala applications was chosen,

namely, Cake.

There are a number of ways to perform DI in Scala without adding a frame-

work. The cake pattern is one popular approach. This pattern was first ex-

plained in Odersky’s paper, Scalable Component Abstractions [128], as the

way he and his team structured the Scala compiler. It works based on Scala

traits [127] that are very similar to the interfaces in Java, but unlike Java,

Scala allows partial implementation of the traits.

Figure 7.4 shows the enhanced architecture of the framework, as detailed above.

There’s one last important note before the discussion of the design enhancement

is ended. It was decided that a browser-based editor approach would be used on this

framework. That implies that the requests coming from the user must be captured

162

7.6. Detailed Design

�

�����������

���������	�
����������

���	
������	�
���������� ���������	�
�

�����������

��������������

������	
���	�

�

������	�������

�����

�

�

�

���������������������������

�	�
���
���

��	������

������������

��
����������
��

������������

�������� �
��

�
������	������

�������	�����
�

�

!���������������

�

!�����"�

�

!�����#�

�

!�������

�

Figure 7.5: The Restructured Architecture of the Framework

and passed to the framework. In web based application architecture, that would be

the responsibility of a webserver. As a result, PlayFramework [16], a Scala-based

web server was installed and surrounded the framework in order to achieve the goal;

however, installing, tuning and maintaining the web server was considered out of

the research’s scope.

7.6 Detailed Design

So far, a few concepts which have attracted developers in recent years have been

reviewed in detail, namely, Domain Driven Design and Domain Specific Language.

The other concepts that will be discussed in this chapter are: Test Driven Develop-

ment (TDD) and Behaviour Driven Development (BDD).

In a nutshell, test driven development is a software development process that re-

lies on the repetition of a very short development cycle i.e. first the developer writes

an automated test case that defines and tests a desired output of a new function, then

163

7.6. Detailed Design

the developer produces the minimum amount of code to pass that test and finally,

refactors the new code to the acceptable standards.

BDD, however, in software engineering, is a software development process that

emerged from test-driven development. BDD combines the general techniques and

principles of TDD with ideas from domain-driven design and object-oriented anal-

ysis and design, to provide software development teams with shared tools and a

shared process to collaborate on software development [2]. BDD is based on prin-

ciples of Hoare logic [101] .

BDD developments starts by defining the behaviour of a function that has to be

written. In principal, this can be achieved by a story. The story should clearly and

precisely answer the following three questions:

• Who is the main stakeholder of this specific story?

• Which output does the stakeholder want from the story?

• What business value will the stakeholder gain from the story output?

The story also should describes the condition(s) (including event triggers) that

expected to be true when the story is commenced. Describing more stories using

BDD approach would gradually results a Ubiquitous Language which is shared

amongst different parties who are participating in software development (Please

refer to Section 6.3.2 that describes DDD in details). The listing 7.1 describes one

single scenario (story) which is described in BDD.

164

7.6. Detailed Design

AS A: System Administrator.

I WANT TO: Add time constraint to the system.

In ORDER TO: Restrict user access to the system outside

working hours.

GIVEN: A system that is secured by a security policy,

AND: A user who is allowed to use the system,

WHEN: His/her access to the system should be restricted to

the working hours by the policy,

THEN: Any violation of the policy should be logged into the

security log-file.

Listing 7.1: Example of BDD Story

The example provided in listing 7.1 provides stakeholder of the story, desired

output of the story and its business value to the environment. Using the ubiquitous

language, the above story is modelled and the following DSL script is derived from

it.

Protect

Target "mySystem"

for executing

Actions "access"

from

Subjects "systemUser"

under following

Subject Conditions "8:00 < time < 17:30"

do

Obligation Action "LogViolation"

Listing 7.2: Example of DSL Script

Listing 7.2 shows the DSL script which has been generated from the story that

165

7.6. Detailed Design

is described in BDD. In the next step, the parser combinator which is responsible

for parsing and populating the semantic model (AST) must be developed. Listing

7.3 and 7.4 show part of the parser combinator which reads and parses the above

script and the AST model of the script, respectively.

lazy val policyType : Parser[PolicyType]=

"Protect" ^^^ Protect | "Allow" ^^^ Allow

lazy val targets : Parser[Targets] =

"Targets" ~> rep1sep(target, "AND") ^^ Targets

lazy val target : Parser[Target] = stringLit ^^ Target

lazy val subjects : Parser[Subjects] =

"from" ~> "Subjects" ~> rep1sep(subject, "AND") ^^ Subjects

lazy val subject : Parser[Subject] = stringLit ^^ Subject

lazy val actions : Parser[Actions] =

"for" ~> "executing" ~> "Actions" ~> rep1sep(action, "AND")

^^ Actions

lazy val action : Parser[Action] = stringLit ^^ Action

Listing 7.3: Parser Combinator Written in Scala

By adopting the procedure detailed above and through an iterative agile ap-

proach, the framework has been gradually taught different features and functions

provided by different security policy languages candidates.

166

7.7. Enhancing the Framework

7.7 Enhancing the Framework

There were two features requested by the users, which have been accommodated

in the high level design, but their implementation was considered outside the scope

of the project; both have been categorised for further work. These two features are

described below:

trait BaseTarget

case class Target(identifier : String) extends BaseTarget

case class Targets (list: Seq[Target])

trait BaseAction

case class Action(identifier : String)extends BaseAction

case class Actions (list: Seq[Action])

case class Condition(lineCondition : String)

case class ConditionList (colList: Seq[Condition])

trait BaseObligation

case class Obligation(identifier : String) extends

BaseObligation

case class Obligations (list: Seq[Obligation])

case class Policy (policyType : PolicyType,

targets : Targets,

subjects : Subjects,

conList : ConditionList,

actions : Actions,

obligations : Obligations

)

Listing 7.4: AST Model Written in Scala

167

7.7. Enhancing the Framework

7.7.1 Limitation of Access to the System

In order to improve usability, it was decided that a browser-based approach would

be used to interact with the framework. This addresses the usability concern, which

was raised by users when they reviewed the framework; however, it creates another

level of threat to the framework: Unauthorised Access. This can be categorised as

an internal threat (please refer to Section 2.1). Using the browser-based approach,

an unauthorised user inside the secured domain can access the system. Although

this level of threat is considered internal and it has a lower risk compared to external

threats, yet the issue must be resolved. There are a number of ways that unautho-

rised access can be prevented. The methods are categorised by their level of impact

on the provided solution as follows:

A) Adding a Database to the System: Perhaps adding a database to the system

would be the simplest yet most effective way to secure the framework against

unauthorised access, without over-engineering the entire architecture. By adding

a database, which could be an open source database like MySQL, the users of

the framework will be provided with a username and password. User creden-

tials will then be encrypted using an encryption algorithm appropriate to the

database. Encryption of the user credentials in the database would protect the

framework from internal threats, in case authorised access to the database is

compromised. That also would add to the overall security of the system.

An advantage of such an approach is the simplicity of the solution. A disad-

vantage, however, is that a new component must be added to the architecture.

Although such a component (i.e. the database) can be used for other purposes

(covered in the next section), that implies more functionality must be added to

the system. As an example, a back-office page must be written in order to man-

age and maintain the system users (e.g., adding, removing and/or deleting the

users). Other functionalities, such as a forgotten password or reset password,

must be added to the system in order to maintain the usability of the system.

B) Restricting Users’ Access to the System by IP/Mac Address: Knowing the fact

168

7.7. Enhancing the Framework

that the framework is located inside a secure domain, access to the server that

hosts the framework can be limited using the IP address and/or Media Access

Control (MAC) address of the requester. Such restrictions can be accomplished

by adding authorised IP or MAC addresses to the surrounding firewalls that

protect the system.

This approach would eliminate the necessity of an extra component for the

system, but again, a level of administration is needed to protect the system by

means of adding and removing addresses that can access the framework. The

security of the system would be entirely dependent on the firewalls and the

firewall administrators. A combination of A and B would be the most secure

approach.

C) Restricting User’s Access to the System by Token. As it has been mentioned

within the introduction of the research, the main users of the framework will

be multi-domain organisations, which generally utilise layers of protection in

their organisations; for example, large-scale financial institutes like banks have

additional precautions. Knowing that many organisations are currently using

one-time tokens to allow their users to access different parts of the network, the

framework can be connected into the security infrastructure of the organisation.

By taking this approach, a few pages must be added to the framework in order

to challenge users and capture their one-time token password in addition to

their credentials. Also, an extra piece of code must be written to send the

captured information to the central token validation centre, which is responsible

for validating the tokens. The same piece of code would be responsible for

receiving the response back from the validation unit and allowing or denying a

requester’s access to the framework.

This approach does not need any extra components and the security of the sys-

tem remains within the boundaries; however, the solution assumes the existence

of the one-time token password generators and a validation server.

169

7.8. Testing and Evaluation

7.7.2 Increasing the Accuracy of the Framework by Reasoning

The second feature which has been requested by the end user was improving the

accuracy of the framework. It has been mentioned before that majority of security

policies use a simple yet effective pattern: who can access what under which cir-

cumstances. On the other hand, users are provided with an abstract language to code

the policies. Taking these two facts into account shows that even such an abstract

language like DSL can be optimised over the time. More usage of the system will

reveal the best way to describe a specific security policy using the DSL.

Considering that there might be a possibility of adding a database to the overall

architecture of the system, the accuracy of the system can be enhanced by adding

a reasoning manager. The reasoning manager would walk through the populated

AST of the parsed input DSL script and collect certain keywords that have been

used within the scripts. Then, it queries the database for best-practised policies

written using the abstract language and feeds the found best practice(s) back to the

user via the UI.

Figure 7.5 reveals the enhanced architecture of the framework, as detailed above.

7.8 Testing and Evaluation

Testing and evaluation of the application has been divided into three distinctive tasks

as follows:

• Assessing the framework against requirement.

• Assessing the framework against acceptance criteria.

• Assessing by evaluation of the framework.

Combination of the above tasks validated the approach taken to implement the

framework.

170

7.8. Testing and Evaluation

�

����������

���������	�
����������

���	
������	�
���������� �������������

�����������

��������������

������	
���	�

�

����������	
��

����

�

�

�

���������������������������

�	�
���
���

��
����������
��

������������

����������
��

�
������	�������

�������	�����
�

�

����������������

�

��������

�

��������

�

��������

�

���������

�

�

��������	�

���	���

��

��

Figure 7.6: The Enhanced Architecture of the Framework

7.8.1 Evaluation the Framework Against Software Requirements

Requirements of the system were discussed back in the Chapter 3 and at the begin-

ning of this chapter. Just to recap, the requirements of the system were a mixture of

experts’ opinion on how the framework should operate and the advantage of DSL

implementation pattern that has been adopted. In this section, the framework’s re-

quirements will be assessed against the proposed architecture and its requirements.

• To Reuse Host Language Infrastructure: It has been decided to implement

the framework by adopting an embedding pattern. That would imply reuse

of the host language infrastructure. The second design of the framework, in

particular, is purely based on Scala and the features provided by the language.

• To Provide Well-formed Measurements: Both the first and second designs

of the system provide code-completion and syntax check to the users. Such

facilities ensure the validity of written DSL script against both syntactical

(accordance to grammar) and contextual (e.g. scoping rules) restrictions.

171

7.8. Testing and Evaluation

• Modular Semantics: In Section 7.5.1, it has been shown how a feature of the

host language can be used as a reusable component that can be put together

to make a chain of parsers. Using parser combinators, a pipeline of parser

components have been designed and implemented that has been utilised by

the framework to parse the DSL scripts.

• To Implement a High Performance System: The framework has gone through

different stages of testing in order to ensure reliability and accuracy of the sys-

tem. A detailed list of these tests, all of which passed with a great level of

confidence, will be provided in the next section.

• To Minimise Development Efforts: Knowing the fact that the development

of a DSL is an expensive task, a great level of attention has been paid to

minimise the development efforts in both stages of design. MDE, in particu-

lar, has been adopted during the first phase to satisfy this requirement of the

framework. During the second round, parser combinators have been used to

minimise development costs of a performant parser from ground up.

• To Have Expandability: The way that the framework was designed and

tested using features provided by security policy language candidates, proved

that expandability is an achievable target within the scope of the project. Util-

ising decoupling technique, in addition to designing a DSL language that is

independent of underlying security policy languages, ensures expandability

of the system in future.

• To Present User-Friendly UI: Simplicity is the most desired requirement of

the system. In fact, the main reason that the first round of design rejected by

users was directly related to this requirement of the system. As the result, a

bespoke user interface has been designed for the framework that is simple yet

powerful, to satisfy and meet the expectation of the users in many ways.

• Security of the System: Security was also another reason that enforced the

design review within the life cycle of this project. It was known from out-

set that this framework will be used within boundaries of a secured environ-

172

7.8. Testing and Evaluation

ment. Although a few assumptions were made that potentially compromised

the security of the system (e.g. installing Eclispe on system administrators’

computer), these issues have been dealt with during system test. In addition

to that, a few test scenarios have been executed in order to ensure overall

security of the system. Details of these tests will follow in next section.

7.8.2 Evaluation the Framework Against Acceptance Criteria

In addition to evaluation of the framework against its requirements, it should have

been rigorously tested against the predefined criteria that were expected to exist

when the framework implementation is completed. Those tests usually are auto-

mated in software development life-cycle.

Unfortunately, tool support for automated testing of DSLs is not comparable

to the like-to-like tools that are provided for GPLs, such as Java and even .Net

languages. To be more precise, support for automated testing of a DSL is non-

existent [153]. This limits the tester’s ability to discover the existence of software

errors in a DSL program in the same way that they approach for code written in

GPLs.

In the context of this research, there were other challenges, which resulted in

using an alternative approach, that are listed here:

• The Framework Is Not a Complete System: To be more precise, the output

of the framework, which will be policies written in different security policy

languages, must be connected to the PAP (please refer to Section 2.3), those

policies must be executed on that specific policy server and the results must

be examined. In other words, the validity of the output cannot be verified at

the point where the code generators produce the policies.

• Tight Security: PAPs were not designed to provide online/on-time informa-

tion. They were designed to capture administrator commands and enforce

those to the servers. The PAPs, which would be the point where the frame-

173

7.8. Testing and Evaluation

work will be connected to, do not have the capability to send the results to the

outside world.

• Failing Does Not Always Mean Failing: There are too many parameters that

have to be taken to consideration, before a test scenario declared as failed. A

test scenario could fail as a result of an invalid DSL script, incomplete genera-

tor or even incompatible policy server that receives the generated policy. The

key point here is that, unlike GPLs where a failure of a test scenario indicates

an error in the code, the failure of a test scenario cannot easily identify where

an issue is located. A level of human interaction and investigation must be

added to the process.

Taking the above into account, a decision was made to abandon the fully au-

tomated test strategy and take an alternative approach as described below, which

perfectly blends with BDD.

Verify a valid
Scenario

Code the
Scenario in

DSL

Execute
DSL script

Test the
Framework

Output

Tune

DSL

Tune
Framework

Figure 7.7: The Proposed Testing Procedure for the Framework

In this approach, that was performed by three Capgemini UK testers (one for

each language), a transcript has been executed with five different scenarios against

each security policy language candidates (i.e. the transcript executed 15 times at

each round). The output of each iteration was then sent back to the developers to

modify the code/DSL in order to address the issue accordingly. The result of these

iterations are presented in this section.

174

7.8. Testing and Evaluation

• Verify a Valid Scenario: At this stage, a valid scenario with an expected

result from all security policy languages must be verified prior to performing

the test. It should be stressed that the scenario must be valid, but that does not

mean that all the policy languages would be able to code the scenario. If the

scenario cannot be coded using a specific security policy language, that must

be known before the test cycle commences.

• Code the Scenario in DSL: As the next step, the verified scenario must be

coded in an abstract policy language (i.e. the DSL). The task must be per-

formed in accordance with the predefined grammar of the DSL.

• Tune the DSL: Introducing a new language is an iterative process. The DSL

of the current research framework is not an exception. The DSL must be

evolved while the framework is constantly tested. During this iterative pro-

cess, unidentified items will be highlighted and must be added, modified or

amended accordingly. Language features, grammars syntax, functionalities

which have not been thought of and introduced before can be presented as

examples. In these cases, the DSL must be tuned in a way that accommo-

dates/modifies the functionalities and provides them to the framework users.

The cycle must be reiterated until all functionalities, features and grammar

syntax of a specific scenario have been marked as fit for the purpose of the

DSL.

• Execute the DSL Script: As the next step, the DSL script must be fed to

the framework. Assuming that the corresponding valuation engine, grammar

configuration files etc. have been modified accordingly in the previous steps,

there should be no issues with the execution of the DSL script by the frame-

work.

• Test the Framework: The output of the framework must be checked against

the expected result, which was defined at step 1. That must be done separately

for every individual security policy language. Specific pattern matching and

text comparison codes can be written to fully automate the process; how-

175

7.8. Testing and Evaluation

ever, in order to semi-automate the step, Specs2, a BDD library for Scala,

was used [146]. Using Specs2 , a small acceptance code (Listing 7.5) was

written to check the output of the code generators. Irrespective of the level

of confidence, the process must be controlled by the developers to ensure the

accuracy of the framework and the output of the code generators.

• Tune the Framework: There will be cases that result in unexpected be-

haviour of the framework. In such a scenario, the individual security policy

language generator must be modified in a way that produces the expected re-

sults. This iterative cycle is continued until either the expected results are

generated by the framework or it is determined that this is not achievable un-

less further changes at other parts of the framework are made. This implies

more code changes, which could have their own effect on the framework en-

tirely.

class GenereatedPolicySpecs extends Specification {

def is = s2

To test the generated policies against expected results

The generated policy should

XACML generated policy must match $e1

Ponder generated policy must match $e2

Protune generated policy must match $e3

def e1 = XacmlGeneratedPolicyFile must

haveSameLinesAs(AccpetdXacmlPolicyFile)

def e2 = PonderGeneratedPolicyFile

must haveSameLinesAs(AccpetdPondrerPolicyFile)

def e3 = ProtuneGeneratedPolicyFile

must haveSameLinesAs(AccpetdProtunePolicyFile)

}

Listing 7.5: Test Script Example Written in SPECS2 (Acceptance Testing)

176

7.8. Testing and Evaluation

The cycle described above must be reiterated over and over again, until enough

confidence is gained by the DSL and back-end developers.

<Policy PolicyId="myPolicy" RuleCombiningAlgId="urn:oasis:

names:tc:xacml:1.0:rule-combining-algorithm:first-applicable"

xmlns="urn:oasis:names:

tc:xacml:1.0:policy" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance">

<Description>This is a Auto generated policy.</Description>

<Target>

<Subjects>

<Subject>

<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:

function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">mySubject</AttributeValue>

<SubjectAttributeDesignator AttributeId="ubdRole"

MustBePresent="false"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</SubjectMatch>

</Subject>

</Subjects>

<Resources>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function

:string-equal">

<ResourceAttributeDesignator AttributeId="ubd:resource:Type"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#

string">MyTarget</AttributeValue>

</ResourceMatch>

</Resource>

</Resources>

<Actions>

177

7.8. Testing and Evaluation

<Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#

string">Action1</AttributeValue>

<ActionAttributeDesignator AttributeId="ubd:action:type"

DataType="http://www.w3.org/2001/XMLSchema#string"/>

</ActionMatch>

</Action>

</Actions>

</Target>

<Rule RuleId="rul_own_record" Effect="Permit">

<Condition>

<Apply FunctionId=

"urn:oasis:names:tc:xacml:1.0:function:string-equal">

<SubjectAttributeDesignator DataType=

"http://www.w3.org/2001/XMLSchema#string">

mySubjectCondition1

</SubjectAttributeDesignator>

</Apply>

</Condition>

</Rule>

</Policy>

Listing 7.6: Example of XACML Policy Generated by Framework

execute(denyMyAction(myTarget,MySubject)) :-

currentRequester(mySubject).

currentRequester(mySubject)->type:provisional.

currentRequester(mySubject)->ontology:{l3s:Dummy_Action}.

denyMyAction(myTarget,MySubject)->type:provisional.

178

7.8. Testing and Evaluation

denyMyAction(myTarget,MySubject)->ontology:{l3s:Dummy_Action

}.

denyMyAction(myTarget,MySubject)->actor:self.

Listing 7.7: Example of Protune Policy Generated by Framework

While on the subject of testing the application, it would be worth mentioning

that, in addition, the following test strategies have been applied to the system in

order to test the integrity of the framework thoroughly. The strategies were:

• Endurance Test/Stability Test

Definition: This tests a given condition over an extended period of time to

ensure application availability and sustained performance. Essentially, this

test can be described as a load test, where a scenario with a key specification

can be run for an extended period of time at a constant load.

Serious endurance testing can take a week or more, but given the timescales

applicable, two hours was the longest practical test duration experienced by

the project. Response times and other system metrics, including memory

usage (measured by customised log files and print commands) were observed

for any indication of system performance degradation over time. The task was

mainly executed to determine any possible memory leaks or other problems

that may show up after the framework has been live for an extended period.

Usually, these tests are most important for high availability 24/7 applications.

During this test, a specific valid security scenario was fed to the framework

and its output has been closely monitored. Although the result was satisfac-

tory, it was noticed that, for extremely large DSL scripts, the session time-out

of the webserver that surrounds the framework had to be increased accord-

ingly. Due to the fact that the application should operate on an environment

with tight security, the increase of the session time-out could lead to other

security breaches (e.g. unauthorised access to the framework, if the admin-

istrator forgets to close his/her browser). After a few attempts with different

settings, a three-minute session time-out was chosen as an appropriate amount

179

7.8. Testing and Evaluation

of time that a session could continue with user inactivity. This provides a good

balance between security and performance of the system.

• Sanity Check

Definition: Highly focused tests intended to identify the specific issues of the

main functionality of the application. It gives a measure of confidence that

the system works as expected, prior to a more exhaustive round of testing.

A great level of attention was given to the security of the system. As a result,

one of the features that was added to the system was the framework to mark

any sensitive information provided by the user that must be logged for testing

or audit purposes. Such a feature will ensure that the security of the whole

domain remain intact, even if human errors occur. A series of scenarios were

written to ensure that this feature works under various circumstances. Frame-

work outputs, including log files, were closely monitored as a result. No

action was taken, as the framework was designed and coded as to not log/s-

tore any sensitive data under any circumstances. Any sensitive information,

such as a username that needs to be logged for auditing purposes, was ob-

scured partially to add to the overall security of the system. An example of

the output commands can be presented as follows:

2014-02-20 10:02:24,267 INFO [STDOUT]

(10.57.115.120-8080-4) About to perform specified Action

2014-02-20 10:02:24,267 INFO [STDOUT]

(10.57.115.120-8080-4) User Amir***ST logged into the system

2014-02-20 10:03:40,932 INFO [STDOUT]

(10.57.115.120-8080-4) Execute the \gls{DSL} was chosen by

user

2014-02-20 10:03:40,932 INFO [STDOUT]

(ajp-10.57.115.120-8080-4) Going to populate the page

Listing 7.8: Example of Obscured Logged Information

180

7.9. Analysis of The Framework

7.8.3 Evaluation of the Framework by Capturing Experts’ Opin-

ion

Last but not the least, the system has been demonstrated to experts and their opin-

ions were captured. During these sessions, the main features of the system have

been demonstrated to the experts (mainly the ones who helped the project to start.

A list of these individual features are presented in Chapter 1). The following fea-

tures have been presented to experts:

• The ways that the framework operates .

• The framework’s features (please refer to system requirements at Chapter 3).

• The way that the framework can learn new semantics (i.e. framework’s ex-

tendability).

• Overall security of the framework.

• Architecture of the framework.

A Question and Answer session was conducted following the presentation and

experts’ views on the framework have been captured. All experts who have attended

the presentation were satisfied with framework, however, they have suggested a

few enhancements to the framework. These have already been discussed in the

enhancement section of this chapter.

7.9 Analysis of The Framework

Back in chapter 4, it has been justified why evaluation of a limited number of secu-

rity policy languages against the framework is desired. Hence, adding more security

policy languages to the framework is inevitable in future. As a result, this section

analyses behaviour of the framework against changes those are required to intro-

duce a new security policy language to the system. This has been analysed as per

the languages feature and after a set of features has been added to the framework.

181

7.9. Analysis of The Framework

As it has been mentioned before, the software methodology that has been se-

lected for the development of the framework was/is Agile. The process had a short

span of the development i.e. two weeks to implement different features for each

specific security policy language. At the end of each sprint, the developed features

delivered to testers to test it based on the predefined acceptance criteria. Reported

issues then were sent back to developers to address them accordingly. The develop-

ment iterations then continued to the point that it passed all the pre-defined criteria.

The number of issues that have been found by testers per languages was different

per features, per sprint. The complexity of the feature and how common the feature

was amongst three security policy languages had a direct impact on the number of

issues that have been found by the testers. For instance obligation that is supported

by all languages was more difficult to implement in a way to satisfy all languages,

rather than features like negotiation that is supported only by one language.

Figure 7.8 presents the number of issues that has been found against one particu-

lar feature that was added to the framework. As suggested by the graph, the number

of the issues at the end of the first iteration is always more compared to the consec-

utive sprints. Also it has been noted that the Xacml that is a XML-based security

policy language needed more attention than the other two languages. Development

of Protune-based security policies created fewer issues (bugs) as it is very close to

human language.

182

7.9. Analysis of The Framework

�������� �������	 ������
� ���������

���� �
 	 �

������ � 	 � �

�������
 � � �

�

�

	

�

�

�

�

�
�
��
��
�
�
�
�
�	
�
�

�

Figure 7.8: Example of Issues Found for a New Feature per Sprint

Figure 7.9 however, presents other aspects of the development. Adding features

to framework requires a level of modification to the ASPL in order to allow the

system administrators to code the new future via the abstract language. Changing

the ASPL in turn forces the semantic model of the framework to be modified to

accommodate the new futures that is dictated by the script i.e. ASPL. Figure 7.9

provides the number of changes that were required to add different features to the

framework.

183

7.9. Analysis of The Framework

���������� ��������	� ��������
� ���������� ����������

���� � � � 	 	

������ � �

 	

�������
 �
 	 	

�

�

	

�

�

�

�

�
�
�
�
�
�
�
��
	

��
�

�

Figure 7.9: Required Changes on Semantic Model per Feature

The figure reveals an interesting fact about the framework. The figure proves

that irrespective of the required changes enforced by the first feature, the number

of changes on the semantic model in the second round of development (i.e. sec-

ond feature) is always more than the first feature. The reason behind this fact is

adding features do have impact on the ASL, however the first feature always can be

developed without any constraints enforced by the semantic model. The first fea-

ture can be added to the framework freely. But, that is not the case for the second

feature onwards, which is added to the framework. The second feature is bound to

the constraints already been introduced (that may not be fit for purpose) by the first

feature. Hence, the number of changes required to be applied to the semantic model

on second feature is always more than the first feature. As more features are added

to the framework, ASPL and in turn, the semantic model gradually matures. These

findings are in line with the definition of DSL and its properties that were discussed

back in Chapter 6 where it has been mentioned that DSL like human languages

184

7.10. Summary

evolve and stabilises over a period of time.

Fig 7.9 provides the number of changes that were required to be applied on the

semantic model during framework development. As can be discovered from the

figure 7.9, Xacml that is a XML-based langue required more changes than human

language look alike language e.g. Protune.

7.10 Summary

7.10.1 Chapter Summary

In this chapter, the software methodology for the implementation of the project

was chosen and justified. Then, the system requirements that were built upon were

detailed, explained and blended with the software methodology.

Then, the chapter presented the high level design of the framework, which was

proposed based on the system requirements. The high level architecture was then

justified by outlining the advantages of the design. In addition, the detailed design

(based on HLA) was presented to the readers. The way that a user’s feedback was

captured and fed back to the system design was explained in detail. That resulted in

the second version of the HLA and its corresponding detail design. Implementation

of the system was also discussed to a great extent, to show how different parts of

the system tie to each other. In addition, it has been discussed how the framework

can be enhanced in future.

Finally, it has been shown how the framework and outline details can be effec-

tively tested. This enabled the system to be more robust and secure in the future.

7.10.2 Research Contributions of the Chapter

To some extent, the entire chapter can be presented as the research’s contribution.

Ultimate objective of this research was/is to provide a framework for security policy

185

7.10. Summary

language, which was presented it in details in this chapter.

Whilst there is no black and white way to decide between different External

DSL implementation patterns, it was shown how to determine project specific re-

quirements and how to use that as a filter, to narrow down different possible design

approaches.

Different software development methodologies like Agile and user-centric de-

sign, that can help to achieve the project’s goal with more accuracy, were shown.

Additionally, it was demonstrated how test strategies can be utilised to evolve a DSL

project in an iterative way.

186

Chapter 8

Conclusion and Future work

In this chapter, the research presents:

• The conclusion of the project,

• Measuring the defined objectives,

• The future work for the project.

8.1 Conclusion

Novel contribution of this project started with the investigation around security pol-

icy languages, which resulted in identifying the necessity of a framework for se-

curity policy languages. The advantages that individuals would gain from such a

framework, if presented to the industry, were also discussed.

Failure is an acceptable concept in the IT arena. This has been measured by

research conducted in the past, including a report compiled by the Standish Group

in 1995 that demonstrated that only 16% of the software projects were successful,

53% were challenged and 31% were cancelled. Moreover, the research showed that

the average software project runs 222% late, 189% over budget and delivers only

61% of the specified functions. Evidence suggests little has changed since then.

187

8.1. Conclusion

Due to this, it was decided to theoretically prove that the project will be suc-

cessful when it comes to life. In order to achieve the goal, the following steps have

been identified and taken, respectively:

1. The high level requirements of the framework, along with the overview of its

abstract security policy language, which will be delivered with the framework,

were discussed. That outlined the road-map of the project.

2. The history of security policies, their origins and their models were reviewed in

detail. That also included their detailed components and the way they that they

work in a secured environment.

3. Then, a literature review of security policy languages was conducted. The review

led the research to select a subset of security policy languages to work on the

framework as candidates.

4. As the next step, a literature review of security policy language algebras and

their characteristics, formalisms and specifications was performed. As a result,

one algebra was chosen as a candidate and evaluated against the security policy

languages selected in step three.

5. Finally, the areas for improvement in the selected algebra were identified and

appropriate solutions to address them were provided by the project.

After it was mathematically proven that the development of the framework is

achievable, the design and implementation phases of the project started. Having

researched different available best software design and development practises and

mapping them to the requirements of this project, it was noted that the design and

development of the project could perfectly match the concept of DSLs. As a result,

research on the subject was conducted. It was noted that for various reasons, the

development of DSLs is an expensive task. In order to control the costs, efforts and

the project plan, the design must be performed in a controlled manner; so, it was

decided to design and implement the project in stages. Implementation phases have

been broken down as follows:

188

8.1. Conclusion

1. Decision Phase: The type of DSL was specified at this stage.

2. Analysis Phase: Aimed to analyse the domain for which the project is imple-

menting a specific language.

3. Design Phase: By analysing different design patterns, it was determined which

of the existing design patterns could be fit for the purposes of this research.

4. Implementation Phase: Different implementation patterns were reviewed and

an appropriate pattern that fits in the context of the research was chosen during

this step.

Finally, in an iterative Agile-based approach, the DSL of the project evolved in

a way that becomes capable of producing security policies for the security policy

language candidates. Lastly, a testing strategy that helped to test the framework

from different perspectives was selected and executed at the end of the project.

Now, it is mandatory to go through the research objectives that have been de-

fined at earlier stages, with the aim of evaluating the research accordingly.

Objective One

To define the project specific criteria for shortlisting the security policy languages.

The task will be executed following the literature review of security policy languages

from different perspectives and categorise them accordingly.

In Chapter 4, different comparison reports on security policy languages that cat-

egorise them from different points of view were reviewed in detail. Their unique-

ness and characteristics of each individual report were discussed and outlined. Hav-

ing reviewed these reports in detail, a custom requirement for the research was tai-

lored for the project and applied to the list of available of security policy languages.

That resulted in choosing a subset consisting of three security policy languages.

189

8.1. Conclusion

Objective Two

To provide formalism for the framework and evaluate it against security policy lan-

guage candidates. The task will be executed following the literature review of cur-

rent algebra for security policy languages.

Steps taken to research algebra for security policy languages were outlined in

Chapter 5. The algebras, which have evolved over the last decade and the majority

of which were published by well-known authors and presented in reputable confer-

ences and journals, have been reviewed and compared.

Advantages and disadvantages of each individual algebra were also discussed

and backed up by acceptable evidence. In addition, an algebra was selected and

the area for improvement and enhancement on the selected algebra that fits within

the context of this research was identified. The chapter continued by providing the

solution and proof to address the identified areas accordingly. Lastly, in the same

chapter, completeness of the enhanced algebra was provided.

Objective Three

To design a framework for security policy languages using appropriate software

development methodologies.

This objective can be considered the ultimate aim of this research; therefore it

was discussed across two chapters, (i.e. Chapter 6 and Chapter 7). In Chapter 6,

it was demonstrated that the best software development practice for developing the

framework for security policy languages fits perfectly in the context of domain spe-

cific languages. In the same chapter, different phases for design and development of

a DSL were discussed in detail. As a result of the discussion, the most appropriate

design and development pattern for the predefined requirements of the framework

was chosen.

In the same chapter, choosing different possible host languages was discussed in

detail. Scala chosen as the programming language for the project and its suitability

190

8.1. Conclusion

was outlined.

Objective Four

To implement a Proof of Concept (PoC) using open source components according

to software development best practice.

The discussion on implementation of the framework continued in Chapter 7

by providing the high-level design and low-level design of the framework. It was

demonstrated how adopting Agile and a user-centric design could rescue a project at

its early stages. In addition, it was shown how user feedback and input to the project

could affect the HLA and LLD of the project. Also, an outline of how the design

can be enhanced and how users can benefit from these was featured by adding more

components to the framework.

Objective Five

To design, develop and enhance an abstract security policy language for the frame-

work.

A step-by-step demonstration of the design, development and enhancement of

our DSL, which is considered to be an abstract security policy language, using

Scalas parser combinators was shown in Chapter 7.

Objective Six

To evaluate the framework in accordance with well-known test strategies.

Finally, the difficulty in fully automated testing strategy for a DSL-based appli-

cation was discussed. That led the project to overcome the issue by combining a

few appropriate testing strategies together and execute them against the project.

191

8.2. Further Work

8.2 Further Work

Although as part of this research, a novel framework for security policy languages

was developed and laboratory studies and a programmatic evaluation process (de-

tailed in previous chapters) satisfied the acceptance criteria of the research, there

are still steps that need to be taken, in order to address certain concerns with regards

to the framework.

8.2.1 Expansion

In Chapter 4, security policy languages from different perspectives were reviewed

and that resulted in tailored requirements for selecting security policy languages.

Applying the requirements on the list of well-known and available security policy

languages led the project to choose three language candidates. This subset of lan-

guages was considered a suitable list of languages, which were then used to evaluate

the framework throughout the project.

Although it was proven that the framework, as designed, is capable of trans-

forming the abstract DSL language to a specific security policy language, that does

not necessary mean that the framework will be capable of transforming the DSL

language to other security policy languages.

There are a number of security policy languages available in the market. It is

almost impossible for a single development team to come up with a solution to cover

them all; inevitably, the best way to expand the project to other languages, beyond

the ones already chosen, would be to make the framework available to other experts

who work in the same area and ask for their participation, collaboration and input

on the project. Providing the code to the public as open source will also help the

framework grow, while others will benefit from its usage.

Assuming such a decision was made, the following steps must be taken before

the code is released to the public.

192

8.2. Further Work

The framework must be properly backed up by a good level of documentation.

In other words:

1. The code must be well-documented. That includes inline comments to describe

certain parts of the code in detail. Also, the code should come with an extended

low-level and high-level design (i.e. extend what has been described in this

document) to describe the framework inside and out.

2. A step-by-step document should be provided to show how to develop a plug-in

policy generator. The document should also demonstrate that there is possibility

that policy code generators could change the top level DSL. In such scenar-

ios, the document also preferably should provide guidance to show how such a

change in the top level DSL should be tested to ensure the integrity of the entire

framework.

3. A user manual should also be provided. The manual should show how a pol-

icy developer (end user) could interact with the framework. It can also provide

users with a troubleshooting section to guide them in how to take certain actions,

should something go wrong during the interaction with the framework.

8.2.2 Security

Security must have a high level of attention during further development of the sys-

tem. Assuming the decision was made to incorporate a database into the framework,

proper steps must be taken to ensure that sensitive information is excluded from

storage in the database. Assuming storing sensitive information in the database is

inevitable, then some further steps must be taken to ensure that the sensitive data

is properly encrypted before being stored in the database, to reduce the risk of an

internal attack.

193

8.3. The Future of the Framework

8.3 The Future of the Framework

Most likely the framework will be used within the application that utilise Micorser-

vices in the future. To justify such a claim the Microservice architecture should be

looked at in more detail.

8.3.1 Microservices

Microservices is an approach to develop a single application as a suite of small

services, each running in its own process and communicating with each other, often

over HTTP resource API. These services are built around business capabilities and

independently deployed by continues automated deployment. Microservices are the

bare minimum of centralised management of these services, which may be written

in different programming languages and use different data storage technologies and

located on different domains as well. Microservices usually publish their endpoints

that are usually RESTful APIs [20].

REST that is stand for REpresentational State Transfer, is an architectural style,

and an approach to communications that is often used in the development of Web

services. The use of REST is often preferred over the more heavyweight SOAP.

REST is often used in mobile applications, and social networking applications. The

REST style emphasises that interactions between clients and services is enhanced

by having a limited number of operations. Flexibility is provided by assigning re-

sources their own unique URIs [26].

Taking the fact that Microservices are communicating over HTTP using REST-

ful APIs, and the fact that micro services can be located in different domains, the

implication is that those Microservices can be protected using features that are pro-

vided by security policy languages.

Now, in a multi-dimensional organisation where different domains have their

own micro services and have their own security policy languages, the security man-

agement of the domain becomes very challenging if not impossible. This is where

194

8.3. The Future of the Framework

An Interoperability Framework for Security Policy Languages (i.e. the output of

this thesis) can be certainly useful.

195

A. List of Open Source Software Used

Appendices

A List of Open Source Software Used

Software Version
Java Development Kit 1.6
Scala development Kit 2.10

Play Framework 2.1
Oitok -

Eclipse 4.0
Xtext 2.2
Xpand 2.0

Ace Editor 1.1.5
Xacml 3.0

Ponder2 2.3
Protune -
Specs2 2.3

Spring (IoC) 4.0

196

B. Policy Language Comparison

B Policy Language Comparison

Following is the result of policy languages comparison performed by De Coi et al..

[62]

197

B. Policy Language Comparison

Figure 1: Policy Languages Comparison

198

C. JVM Language Comparison

C JVM Language Comparison

Following is the result of JVM languages comparison performed by Wing Hang Li

et al..

199

C. JVM Language Comparison

Figure 2: JVM Languages Comparison

200

D. Requirement Gathering Questioner

D Requirement Gathering Questioner

Following is a snapshot of questioner used to capture functional and non-functional

requirements of the framework.

201

D. Requirement Gathering Questioner

�� �������	
	���� ����	��

�����

����	
���

 ������������
���������������������

� �����
����������������������
�����
��

�

���������������������������

������������������������

� �����
��������������
����������

 �����
��������������
����������

!

�����
���������
�"���������
����������

�
��������#�

$

����������������������%%����&�����'

���
����������

(���������������������������)
�
����

* ������
�����
������������������

+ ������
�����������������
��

�� ��������������������������

� ,����������#���������#�����%%����
�����
��

-����.���������/�

0��#�����"����������
%
���
���
����
�����)�#1�

2��#�����)�������
�����������
�������
����)
��/�����%����
%����3�%��
�����������������������)
���
������#��
����������������	
�
��������������

�����
�����
������������ �-���������4��
����%�������%������������"�&�����#��
�
���������%�'/�#�����)�����������%����������)
����������3�%���
���

#����
�)��������)
�������������%������������"�����������"1�	�
��5��)�#�������������
��������%���������������6�
��������
�������������#1�

7���������)
���������6�
������������#�������������%��������������"�������)
���
������������
�������1�7�������������������������6�
�����������

�����������������
)�������%���������
���1

,��������
"�������"����
����������
�#����������%
����#���������������������
����)��%�1

8
����������

2�
��2�#������

Figure 3: Requirement Gathering Questioner

202

E. Survey Questioner

E Survey Questioner

Following is a snapshot of survey used to capture user’s opinion after a PoC of the

framework presented to them.

203

E. Survey Questioner

�� �������	
	���� ����	��

�����

����	
���

��

�
���
�
������������������������
������
���

��� �� �!���

����������������������������������"
���

��

�������
����
��������������"
�������!��

����������������������������������"
����

��

���
��������������������#�
��������
������

��������#���!�

����������������������������������"
����

��

�"����������
�
������������������#!�

$%�"������������&���

����������������������������������"
����

��

�
���
�
����������'(�)���� �� �!�

$%�"������������&���

����������������������������������"
����

��

�"�������*������
�
������������������#!�

$%�"������������&��

����������������������������������"
���

��������������������������������������

�������
"�����+��������������������

��������#!�����

����������������������������������"
���

���

�"���������
�����
����
���������������#!�����

����������������������������������"
���

,

����������"
�������
�������

����$�&+�������$�&��������"��������������

���
� ���
���*���
��-

�.

����������"
��������� ���
������������

�����������
����"��������������#-

/

��0�����������������������1����������������������2��������������������������

3

��0�����������������������1����������������������2��������������������������

4

��0�����������������������1����������������������2��������������������������

2

��0�����������������������1����������������������2��������������������������

�

��0�����������������������1����������������������2��������������������������

0

��0�����������������������1����������������������2��������������������������

1

��0�����������������������1����������������������2��������������������������

%����5����� �����

6��������#����������
�
���
� �
����
���*���
��-�

7����
������
"������������������
�����������
���������������������
������
������ �� �����
� �������������#����"
���-

��������������������������
� �����������������������
���������������"���
�
����������*���
��-

��������
#�������#����
����������
�������������
��������������������������
����"����-

8
����� ����

��
�����������

�

�	��	����������������	�����������

��0�����������������������1����������������������2��������������������������

Figure 4: Survey Questioner

204

References

[1] Ajax based source code editor. Available at http://debasishg.blogspot.

co.uk/2008/04/external-dsls-made-easy-with-scala.html, [On-

line] , Accessed: 2013-09-15.

[2] Behavior-driven development. Available at http://en.wikipedia.org/

wiki/Behavior-driven_development, [Online] , Accessed: 2014-09-28.

[3] Boxplot. Available at http://en.wikipedia.org/wiki/Box_plot, [On-

line] , Accessed: 2013-02-07.

[4] Clojure vs scala, author =Mark Engelberg, howpublished = Avail-

able at http://programming-puzzler.blogspot.co.uk/2013/12/

clojure-vs-scala.html, [Online] , Accessed: 2014-01-10.

[5] Codemirror a versatile text editor. Available at http://codemirror.net/,

[Online] , Accessed: 2013-09-15.

[6] Common information model. Available at http://www.dmtf.org/

standards/cim, [Online] , Accessed: 2010-09-30.

[7] Document object model. Available at http://www.w3.org/DOM/, [Online]

, Accessed: 2011-02-27.

[8] Dsl development environment. Available at https://www.jetbrains.

com/mps/, [Online] , Accessed: 2013-05-10.

[9] Eclipse modelling. Available at http://www.eclipse.org/modeling/

m2t/?project=xpand, [Online] , Accessed: 2012-10-19.

205

http://debasishg.blogspot.co.uk/2008/04/external-dsls-made-easy-with-scala.html
http://debasishg.blogspot.co.uk/2008/04/external-dsls-made-easy-with-scala.html
http://en.wikipedia.org/wiki/Behavior-driven_development
http://en.wikipedia.org/wiki/Behavior-driven_development
http://en.wikipedia.org/wiki/Box_plot
http://programming-puzzler.blogspot.co.uk/2013/12/clojure-vs-scala.html
http://programming-puzzler.blogspot.co.uk/2013/12/clojure-vs-scala.html
http://codemirror.net/
 http://www.dmtf.org/standards/cim
 http://www.dmtf.org/standards/cim
 http://www.w3.org/DOM/
https://www.jetbrains.com/mps/
https://www.jetbrains.com/mps/
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand

[10] Eclipse modelling framework. Available at http://eclipse.org/

modeling/emf/, [Online] , Accessed: 2012-10-19.

[11] Eclipse plugins. Available at http://ostatic.com/eclipse, [Online] ,

Accessed: 2012-10-19.

[12] Editarea, a free javascript editor for source code. Available at http://www.

cdolivet.com/editarea/?page=editArea, [Online] , Accessed: 2013-

09-15.

[13] The extensible stylesheet language family (xsl). Available at http://www.

w3.org/Style/XSL/, [Online] , Accessed: 2011-02-27.

[14] High level design. Available at http://en.wikipedia.org/wiki/

High-level_design, [Online] , Accessed: 2013-06-23.

[15] High performance code editor. Available at http://ace.c9.io/#nav=

about, [Online] , Accessed: 2013-09-15.

[16] The high velocity web framework for scala and java. Available at https:

//www.playframework.com/, [Online] , Accessed: 2014-01-28.

[17] Interaction for the new millennium. Available at http://www.sdlforum.

org/MSC2000present/index.htm, [Online] , Accessed: 2013-01-11.

[18] Jruby a programming language. Available at http://jruby.org/, [Online]

, Accessed: 2013-02-07.

[19] Jython, an implementation of the python programming language on jvm

platform, author =Frank Wierzbicki, howpublished = Available at https:

//irony.codeplex.com/, [Online] , Accessed: 2013-02-07.

[20] Microservices, a definition of this new architectural term. Available at

http://martinfowler.com/articles/microservices.html, [Online] ,

Accessed: 2016-01-28.

206

http://eclipse.org/modeling/emf/
http://eclipse.org/modeling/emf/
http://ostatic.com/eclipse
http://www.cdolivet.com/editarea/?page=editArea
http://www.cdolivet.com/editarea/?page=editArea
 http://www.w3.org/Style/XSL/
 http://www.w3.org/Style/XSL/
http://en.wikipedia.org/wiki/High-level_design
http://en.wikipedia.org/wiki/High-level_design
http://ace.c9.io/#nav=about
http://ace.c9.io/#nav=about
https://www.playframework.com/
https://www.playframework.com/
 http://www.sdlforum. org/MSC2000present/index.htm
 http://www.sdlforum. org/MSC2000present/index.htm
http://jruby.org/
https://irony.codeplex.com/
https://irony.codeplex.com/
http://martinfowler.com/articles/microservices.html

[21] An open source identity and access management framework. Available at

http://www.gluu.org/gluu-server/overview/, [Online] , Accessed:

2014-01-28.

[22] Overview of xacml. Available at http://en.wikipedia.org/wiki/

XACML, [Online] , Accessed: 2012-05-11.

[23] Policy framework for device apis. Available at http://dev.w3.org/2009/

dap/policy/Framework.html, [Online] , Accessed: 2013-01-20.

[24] Review of security policy languages and frameworks. Available at http:

//www.w3.org/Policy/pling/wiki/PolicyLangReview, [Online] , Ac-

cessed: 2010-09-30.

[25] Spring inversion of control. Available at http://docs.spring.io/

spring-framework/docs/current/spring-framework-reference/

html/beans.html, [Online] , Accessed: 2012-11-01.

[26] What is rest. Available at http://searchsoa.techtarget.com/

definition/REST, [Online] , Accessed: 2016-01-28.

[27] Xquery 1.0: An xml query language (second edition). Available at http:

//www.w3.org/TR/xquery/, [Online] , Accessed: 2011-02-27.

[28] Xtext a framework for development of programming languages and domain

specific languages. Available at https://eclipse.org/Xtext/, [Online]

, Accessed: 2013-05-10.

[29] Integrity considerations for secure computer systems. MITRE Co., technical

report ESD-TR 76-372, 1977.

[30] Iso/iec 14977:1996 information technology - syntactic metalanguage - ex-

tended bnf, 1996.

[31] Post-design domain-specific language embedding: a case study in the soft-

ware engineering domain, 2002.

207

http://www.gluu.org/gluu-server/overview/
 http://en.wikipedia.org/wiki/XACML
 http://en.wikipedia.org/wiki/XACML
 http://dev.w3.org/2009/dap/policy/Framework.html
 http://dev.w3.org/2009/dap/policy/Framework.html
 http://www.w3.org/Policy/pling/wiki/PolicyLangReview
 http://www.w3.org/Policy/pling/wiki/PolicyLangReview
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/beans.html
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/beans.html
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/beans.html
http://searchsoa.techtarget.com/definition/REST
http://searchsoa.techtarget.com/definition/REST
 http://www.w3.org/TR/xquery/
 http://www.w3.org/TR/xquery/
 https://eclipse.org/Xtext/

[32] An introduction to the Web Services Policy Language, 2004.

[33] Trust-X: A Peer-to-Peer framework for trust establishment. IEEE Trans. on

Knowl. and Data Eng., 16(7):827–842, 2004.

[34] Survey on xml-based policy languages for open environments. Journal of

Information Assurance and security, 1(1):11–20, Mar. 2006.

[35] C. Abras, D. Maloney-krichmar, and J. Preece. User-centered design. In

In Bainbridge, W. Encyclopedia of Human-Computer Interaction. Thousand

Oaks: Sage Publications. Publications, 2004.

[36] J. Akerley, A. Parlavecchia, and N. Li. Programming with VisualAge for Java

Version 2.0 with Cdrom. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

2nd edition, 1999.

[37] P. Almqvist. 10 user interface design fundamen-

tals. Available at http://blog.teamtreehouse.com/

10-user-interface-design-fundamentals, [Online] , Accessed:

2013-06-23.

[38] G. A. And, G. Antoniou, G. Antoniou, F. Van Harmelen, and F. Van Harme-

len. Web ontology language: Owl. In Handbook on Ontologies in Informa-

tion Systems, pages 67–92, 2003.

[39] A. Anderson. A comparison of two privacy policy languages: Epal and

xacml. Technical report, Mountain View, CA, USA, 2005.

[40] R. J. Anderson. Security Engineering: A Guide to Building Dependable

Distributed Systems. Wiley, Hoboken, NJ, USA, 2008.

[41] M. Anlauff, P. Kutter, and A. Pierantonio. Domain specific languages in

software engineering.

[42] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise

privacy authorization language (EPAL 1.2). Technical report, IBM, 2003.

208

http://blog.teamtreehouse.com/10-user-interface-design-fundamentals
http://blog.teamtreehouse.com/10-user-interface-design-fundamentals

[43] J. W. Backus. The syntax and semantics of the proposed international alge-

braic language of the zurich acm-gamm conference. In IFIP Congress, pages

125–131, 1959.

[44] M. Y. Becker, C. Fournet, and A. D. Gordon. SecPAL: Design and semantics

of a decentralized authorization language. Journal of Computer Security,

18(4):619–665, Jan. 2010.

[45] M. Y. Becker and P. Sewell. Cassandra: distributed access control policies

with tunable expressiveness. pages 159–168, June 2004.

[46] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Mathematical

Foundations. Technical report, MITRE CORP BEDFORD MA, Nov. 1973.

[47] J. Bentley. Programming Pearls (2nd Edition). Addison-Wesley Profes-

sional, 2 edition, Oct. 1999.

[48] T. J. Bergin, Jr. and R. G. Gibson, Jr., editors. History of Programming

languages—II. ACM, New York, NY, USA, 1996.

[49] E. Bertino, S. Castano, and E. Ferrari. On specifying security policies for web

documents with an XML-based language. In SACMAT ’01: Proceedings of

the sixth ACM symposium on Access control models and technologies, pages

57–65, New York, NY, USA, 2001. ACM.

[50] J. Bézivin. Model Driven Engineering: An Emerging Technical Space. In

R. Lämmel, J. a. Saraiva, and J. Visser, editors, Generative and Transforma-

tional Techniques in Software Engineering, volume 4143 of Lecture Notes

in Computer Science, chapter 2, pages 36–64. Springer Berlin / Heidelberg,

Berlin, Heidelberg, 2006.

[51] M. Blaze, J. Ioannidis, and A. D. Keromytis. Experience with the keynote

trust management system: Applications and future directions. In Proceedings

of the 1st International Conference on Trust Management, iTrust’03, pages

284–300, Berlin, Heidelberg, 2003. Springer-Verlag.

209

[52] P. Bonatti, S. De Capitani di Vimercati, and P. Samarati. An algebra for

composing access control policies. ACM Trans. Inf. Syst. Secur., 5(1):1–35,

Feb. 2002.

[53] P. Bonatti and D. Olmedilla. Driving and monitoring provisional trust nego-

tiation with metapolicies. In In 6th IEEE International Workshop on Policies

for Distributed Systems and Networks (POLICY 2005, pages 14–23. IEEE

Computer Society, 2005.

[54] P. Bonatti and P. Samarati. Regulating service access and information release

on the web. In CCS ’00: Proceedings of the 7th ACM conference on Com-

puter and communications security, volume 10, pages 134–143, New York,

NY, USA, 2000. ACM.

[55] P. A. Bonatti, G. Antoniou, M. Baldoni, C. Baroglio, C. Duma, N. Fuchs,

W. Nejdl, D. Olmedilla, J. Peer, V. Patti, and N. Shamheri. The rewerse view

on policies. In In Proc. of the ISWC Semantic Web Policy Workshop (SWPW),

http: //ebiquity.umbc.edu/get/a/publication/215.pdf, 2005.

[56] M. Bravenboer and E. Visser. Concrete syntax for objects: domain-specific

language embedding and assimilation without restrictions. SIGPLAN Not.,

39:365–383, Oct. 2004.

[57] D. F. C. Brewer and M. J. Nash. The Chinese wall security policy. In Pro-

ceedings of the 1989 IEEE Symposium on Security and Privacy, pages 206–

214, 1989.

[58] S. A. Brown, C. E. Drayton, and B. Mittman. A description of the apt lan-

guage. Commun. ACM, 6(11):649–658, Nov. 1963.

[59] W. H. Burge. Recursive programming techniques. The systems programming

series. Addison-Wesley, Reading (Mass.), 1975.

[60] D. D. Clark and D. R. Wilson. A comparison of commercial and military

computer security policies. In Proceedings of the 1987 IEEE Symposium on

Security and Privacy, pages 184–194. IEEE Computer Society Press, 1987.

210

[61] F. J. G. Clemente, G. M. Pérez, J. A. B. Blaya, and A. G. Skarmeta. Rep-

resenting security policies in web information systems. International World

Wide Web Conference (WWW 2005), 2005.

[62] J. L. Coi and D. Olmedilla. A review of trust management, security and

privacy policy languages. In International Conference on Security and Cryp-

tography (SECRYPT 2008), pages 483–490. INSTICC Press, 2008.

[63] C. Consel, H. Hamdi, L. Rveillre, L. Singaravelu, H. Yu, and C. Pu. Spi-

dle: A dsl approach to specifying streaming applications. In F. Pfenning

and Y. Smaragdakis, editors, Generative Programming and Component En-

gineering, volume 2830 of Lecture Notes in Computer Science, pages 1–17.

Springer Berlin Heidelberg, 2003.

[64] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, Second Edition. The MIT Press, 2nd edition, Sept. 2001.

[65] L. Cranor, M. Langheinrich, and M. Marchiori. A p3p preference exchange

language 1.0 (appel1. 0). W3C working draft, 15, 2002.

[66] D. Crockford. JSON: The Fat-Free Alternative to XML, Dec. 2006.

[67] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy spec-

ification language. In LECTURE NOTES IN COMPUTER SCIENCE, pages

18–38. Springer-Verlag, 2001.

[68] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill

Science/Engineering/Math, 1 edition, Sept. 2006.

[69] F. v. H. Deborah L. McGuinness. Feature synopsis for owl lite and owl. Avail-

able at http://www.w3.org/TR/2002/WD-owl-features-20020729/,

[Online] , Accessed: 2013-05-17.

[70] J. den Haan. 15 lessons learned during the development

of a model driven software factory. Available at http:

//www.theenterprisearchitect.eu/blog/2010/09/06/

211

 http://www.w3.org/TR/2002/WD-owl-features-20020729/
 http://www.theenterprisearchitect.eu/blog/2010/09/06/15-lessons-learned-during-the-development-of-a-model-driven-software-factory/
 http://www.theenterprisearchitect.eu/blog/2010/09/06/15-lessons-learned-during-the-development-of-a-model-driven-software-factory/
 http://www.theenterprisearchitect.eu/blog/2010/09/06/15-lessons-learned-during-the-development-of-a-model-driven-software-factory/

15-lessons-learned-during-the-development-of-a-model-driven-software-factory/,

[Online] , Accessed: 2013-03-21.

[71] J. den Haan. Domain specific language design

based on domain-driven design. Available at http:

//www.theenterprisearchitect.eu/blog/2009/05/06/

dsl-development-7-recommendations-for-domain-specific-language-design-based-on-domain-driven-design/,

[Online] , Accessed: 2013-03-21.

[72] J. den Haan. Mde model driven engineering reference guide. Avail-

able at http://www.theenterprisearchitect.eu/blog/2009/01/15/

mde-model-driven-engineering-reference-guide/, [Online] , Ac-

cessed: 2013-03-23.

[73] J. den Haan. Mendix platform. Available at http://www.mendix.com/

application-platform-as-a-service/, [Online] , Accessed: 2013-03-

21.

[74] A. V. Deursen and P. Klint. Little languages: Little maintenance?, 1998.

[75] D. Duggan. A mixin-based, semantics-based approach to reusing domain-

specific programming languages. In Proceedings of the 14th European

Conference on Object-Oriented Programming, ECOOP ’00, pages 179–200,

London, UK, UK, 2000. Springer-Verlag.

[76] C. Duma, A. Herzog, and N. Shahmehri. Privacy in the semantic web: What

policy languages have to offer. In Policies for Distributed Systems and Net-

works, 2007. POLICY ’07. Eighth IEEE International Workshop on, pages

109–118, 2007.

[77] S. Efftinge and M. Völter. oAW xText: A framework for textual DSLs. In

Eclipsecon Summit Europe 2006, Nov. 2006.

[78] C. Elliott, S. Finne, and O. de Moor. Compiling Embedded Languages. In

SAIG, pages 9–27, 2000.

212

 http://www.theenterprisearchitect.eu/blog/2010/09/06/15-lessons-learned-during-the-development-of-a-model-driven-software-factory/
 http://www.theenterprisearchitect.eu/blog/2010/09/06/15-lessons-learned-during-the-development-of-a-model-driven-software-factory/
 http://www.theenterprisearchitect.eu/blog/2009/05/06/dsl-development-7-recommendations-for-domain-specific-language-design-based-on-domain-driven-design/
 http://www.theenterprisearchitect.eu/blog/2009/05/06/dsl-development-7-recommendations-for-domain-specific-language-design-based-on-domain-driven-design/
 http://www.theenterprisearchitect.eu/blog/2009/05/06/dsl-development-7-recommendations-for-domain-specific-language-design-based-on-domain-driven-design/
 http://www.theenterprisearchitect.eu/blog/2009/01/15/mde-model-driven-engineering-reference-guide/
 http://www.theenterprisearchitect.eu/blog/2009/01/15/mde-model-driven-engineering-reference-guide/
 http://www.mendix.com/application-platform-as-a-service/
 http://www.mendix.com/application-platform-as-a-service/

[79] M. Engelberg. Ponder overview. Available at http://ponder2.net/

cgi-bin/moin.cgi/Ponder2Overview, [Online] , Accessed: 2013-09-10.

[80] E. Evans. Domain-Driven Design: Tacking Complexity In the Heart of Soft-

ware. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2003.

[81] R. d. A. Falbo, G. Guizzardi, and K. C. Duarte. An ontological approach to

domain engineering. In Proceedings of the 14th International Conference on

Software Engineering and Knowledge Engineering, SEKE ’02, pages 351–

358, New York, NY, USA, 2002. ACM.

[82] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-NCSC

National Computer Security Conference, pages 554–563, Baltimore, MD,

Oct. 1992.

[83] R. Finkel. Advanced Programming Language Design. Addison-Wesley,

1996.

[84] M. Flatt. Composable and compilable macros: you want it when? In ICFP

’02: Proceedings of the seventh ACM SIGPLAN international conference on

Functional programming, volume 37, pages 72–83, New York, NY, USA,

Sept. 2002. ACM.

[85] M. Fowler. Language workbenches: The killer-app for domain specific

languages? Available at http://www.martinfowler.com/articles/

languageWorkbench.html, [Online] , Accessed: 2013-03-21.

[86] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley

Professional, 1 edition, Nov. 2002.

[87] M. Fowler. Domain-Specific Languages (Addison-Wesley Signature Series

(Fowler)). Addison-Wesley Professional, 1 edition, Oct. 2010.

[88] M. Fowler and J. Highsmith. The agile manifesto. Software Development,

9(8):28–35, 2001.

213

http://ponder2.net/cgi-bin/moin.cgi/Ponder2Overview
http://ponder2.net/cgi-bin/moin.cgi/Ponder2Overview
 http://www.martinfowler.com/articles/languageWorkbench.html
 http://www.martinfowler.com/articles/languageWorkbench.html

[89] W. Frakes, R. Prieto-Diaz, and C. Fox. Dare: Domain analysis and reuse

environment. Ann. Softw. Eng., 5:125–141, Jan. 1998.

[90] R. Frost. Monadic memoization towards correctness-preserving reduction of

search. In Proceedings of the 16th Canadian Society for Computational Stud-

ies of Intelligence Conference on Advances in Artificial Intelligence, AI’03,

pages 66–80, Berlin, Heidelberg, 2003. Springer-Verlag.

[91] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-oriented Software. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1995.

[92] R. Gavriloaie, W. Nejdl, D. Olmedilla, K. E. Seamons, and M. Winslett. No

registration needed: How to use declarative policies and negotiation to access

sensitive resources on the semantic web. In The Semantic Web: Research and

Applications, pages 342–356. 2004.

[93] D. Ghosh. External dsls made easy with scala parser combi-

nators. Available at http://debasishg.blogspot.co.uk/2008/04/

external-dsls-made-easy-with-scala.html, [Online] , Accessed:

2013-09-07.

[94] D. Ghosh. DSLs in Action. Manning Publications Co., Greenwich, CT, USA,

1st edition, 2010.

[95] G. S. Graham and P. J. Denning. Protection: principles and practice. In Pro-

ceedings of the May 16-18, 1972, spring joint computer conference, AFIPS

’72 (Spring), pages 417–429, New York, NY, USA, 1972. ACM.

[96] S. Halloway and A. Bedra. Programming Clojure. Pragmatic Bookshelf, 2nd

edition, 2012.

[97] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating

systems. Commun. ACM, 19(8):461–471, Aug. 1976.

[98] H. Hartig, O. Kowalski, and W. Kuhnhauser. The birlix security architecture.

Journal of Computer Security, 2:5–21, 1993.

214

http://debasishg.blogspot.co.uk/2008/04/external-dsls-made-easy-with-scala.html
http://debasishg.blogspot.co.uk/2008/04/external-dsls-made-easy-with-scala.html

[99] D. Heimbigner. Dmtf-cim to owl: A case study in ontology conversion.

In 16th International Confernece of Software Engineering and Knowledge

Engineering (SEKE) (2004).

[100] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid. Access control

meets public key infrastructure, or: assigning roles to strangers. pages 2–14,

Aug. 2002.

[101] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, Oct. 1969.

[102] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic embedding

of dsls. In Proceedings of the 7th International Conference on Generative

Programming and Component Engineering, GPCE ’08, pages 137–148, New

York, NY, USA, 2008. ACM.

[103] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean,

et al. Swrl: A semantic web rule language combining owl and ruleml. W3C

Member submission, 21:79, 2004.

[104] Iso. ISO/IEC 10181-3:1996 - information technology – open systems inter-

connection – security frameworks for open systems: Access control frame-

work.

[105] S. Johnson. YACC: Yet another compiler-compiler, 1979.

[106] L. Kagal, T. Finin, and A. Joshi. A policy based approach to security for the

semantic web. In The SemanticWeb - ISWC 2003, pages 402–418. 2003.

[107] L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive com-

puting environment. In Proceedings of the 4th IEEE International Workshop

on Policies for Distributed Systems and Networks, POLICY ’03, pages 63–,

Washington, DC, USA, 2003. IEEE Computer Society.

[108] D. Knuth. The genesis of attribute grammars. In Attribute Grammars and

their Applications, pages 1–12. 1990.

215

[109] D. Koenig, A. Glover, P. King, G. Laforge, and J. Skeet. Groovy in Action.

Manning Publications Co., Greenwich, CT, USA, 2007.

[110] D. S. Kolovos, R. F. Paige, T. Kelly, and F. A. C. Polack. Requirements for

Domain-Specific Languages. In Proc. 1st ECOOP Workshop on Domain-

Specific Program Development (DSPD 2006), Nantes, France, July 2006.

[111] J. Kulandai. Dependency injection (di) with spring. Available at http://

javapapers.com/spring/dependency-injection-di-with-spring#

springdi, [Online] , Accessed: 2012-11-01.

[112] P. Kumaraguru, J. Lobo, L. F. Cranor, and S. B. Calo. S.: A survey of privacy

policy languages. In In: Workshop on Usable IT Security Management (USM

07): Proceedings of the 3rd Symposium on Usable Privacy and Security,

ACM, 2007.

[113] W. E. Khnhauser and M. von Kopp Ostrowski. A framework to support

multiple security policies. In In Proceedings of the 7th Canadian Computer

Security Symposium, 1995.

[114] M. E. Lesk and E. Schmidt. Unix vol. ii. chapter Lex&Mdash;a Lexical

Analyzer Generator, pages 375–387. W. B. Saunders Company, Philadelphia,

PA, USA, 1990.

[115] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust

management framework. In Proc. IEEE Symposium on Security and Privacy,

Oakland, May 2002.

[116] N. Li and Q. Wang. Beyond separation of duty: An algebra for specifying

high-level security policies. J. ACM, 55(3), 2008.

[117] W. H. Li, D. R. White, and J. Singer. Jvm-hosted languages: they talk the

talk, but do they walk the walk? In M. Plmicke and W. Binder, editors, PPPJ,

pages 101–112. ACM, 2013.

216

http://javapapers.com/spring/dependency-injection-di-with-spring#springdi
http://javapapers.com/spring/dependency-injection-di-with-spring#springdi
http://javapapers.com/spring/dependency-injection-di-with-spring#springdi

[118] F. v. d. Linden, editor. Proceedings of the Second International ESPRIT

ARES Workshop on Development and Evolution of Software Architectures

for Product Families, London, UK, UK, 1998. Springer-Verlag.

[119] M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah. First experiences

using XACML for access control in distributed systems. In XMLSEC ’03:

Proceedings of the 2003 ACM workshop on XML security, pages 25–37, New

York, NY, USA, 2003. ACM.

[120] F. M.A.d.S. Codepress, online real time syntax highlighting editor. Available

at http://codepress.sourceforge.net/, [Online] , Accessed: 2013-09-

15.

[121] B. A. N. L. Maedche, Alexander. Software for People. Springer, 2012.

[122] B. Marchal. Sax, the power api. Available at http://www.ibm.com/

developerworks/xml/library/x-saxapi/, [Online] , Accessed: 2011-

02-27.

[123] S. Mauw, W. T. Wiersma, and T. A. C. Willemse. Language-driven system

design. International Journal of Software Engineering and Knowledge En-

gineering, 14(6):625–663, 2004.

[124] J. Melton and A. R. Simon. SQL: 1999 - Understanding Relational Language

Components. Morgan Kaufmann, May 2001.

[125] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-

specific languages. ACM Comput. Surv., 37(4):316–344, Dec. 2005.

[126] W. Nejdl, D. Olmedilla, and M. Winslett. PeerTrust: Automated trust nego-

tiation for peers on the semantic web. In Secure Data Management, pages

118–132. 2004.

[127] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A Compre-

hensive Step-by-step Guide. Artima Inc, 1st edition edition, Nov. 2008.

217

http://codepress.sourceforge.net/
 http://www.ibm.com/developerworks/xml/library/x-saxapi/
 http://www.ibm.com/developerworks/xml/library/x-saxapi/

[128] M. Odersky and M. Zenger. Scalable component abstractions. In Proceed-

ings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Pro-

gramming, Systems, Languages, and Applications, OOPSLA ’05, pages 41–

57, New York, NY, USA, 2005. ACM.

[129] T. Parr. Another tool for language recognition. Available at http://www.

antlr.org, [Online] , Accessed: 2011-05-09.

[130] J. E. L. Peck, editor. ALGOL 68 Implementation: Proceedings of the IFIP

Working Conference on ALGOL 68 Implementation, Munich, Germany, July

20-24, 1970. North-Holland, 1971.

[131] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo. An algebra for fine-grained

integration of xacml policies. In Proceedings of the 14th ACM Symposium on

Access Control Models and Technologies, SACMAT ’09, pages 63–72, New

York, NY, USA, 2009. ACM.

[132] J. C. Reynolds. The essence of ALGOL. In P. W. O’Hearn and R. D. Tennent,

editors, ALGOL-like Languages, Volume 1, chapter The essence of ALGOL,

pages 67–88. Birkhauser Boston Inc., Cambridge, MA, USA, 1997.

[133] Rivantsov. A development kit for implementing languages on .net platform.

Available at https://irony.codeplex.com/, [Online] , Accessed: 2013-

01-30.

[134] D. Roam. The back of the napkin: Solving problems and selling ideas with

pictures. Portfolio Hardcover, Mar. 2008.

[135] M. Rouse. loose coupling. Available at http://searchnetworking.

techtarget.com/definition/loose-coupling, [Online] , Accessed:

2013-03-11.

[136] A. Sarimbekov, A. Podzimek, L. Bulej, Y. Zheng, N. Ricci, and W. Binder.

Characteristics of dynamic jvm languages. In Proceedings of the 7th ACM

Workshop on Virtual Machines and Intermediate Languages, VMIL ’13,

pages 11–20, New York, NY, USA, 2013. ACM.

218

 http://www.antlr.org
 http://www.antlr.org
https://irony.codeplex.com/
http://searchnetworking.techtarget.com/definition/loose-coupling
http://searchnetworking.techtarget.com/definition/loose-coupling

[137] A. Sarimbekov, A. Sewe, S. Kell, Y. Zheng, W. Binder, L. Bulej, and

D. Ansaloni. A comprehensive toolchain for workload characterization

across jvm languages. In Proceedings of the 11th ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering, PASTE

’13, pages 9–16, New York, NY, USA, 2013. ACM.

[138] G. Schreiber and M. Dean. OWL web ontology language reference. Avail-

able at http://www.w3.org/TR/2004/REC-owl-ref-20040210/, Febru-

ary 2004.

[139] K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills,

and L. Yu. Requirements for policy languages for trust negotiation. Poli-

cies for Distributed Systems and Networks, IEEE International Workshop

on, 0:0068+, 2002.

[140] M. Simos and J. Anthony. Weaving the model web: A multi-modeling ap-

proach to concepts and features in domain engineering. In Proceedings of

the 5th International Conference on Software Reuse, ICSR ’98, pages 94–,

Washington, DC, USA, 1998. IEEE Computer Society.

[141] D. Spinellis. Notable design patterns for domain specific languages. Journal

of Systems and Software, 56(1):91–99, Feb. 2001.

[142] R. N. Taylor, W. Tracz, and L. Coglianese. Software development us-

ing domain-specific software architectures: Cdrl a011—a curriculum

module in the sei style. SIGSOFT Softw. Eng. Notes, 20(5):27–38, Dec. 1995.

[143] R. Tennent. Language design methods based on semantic principles. Acta

Informatica, 8(2):97–112, 1977.

[144] D. Thomas and A. Hunt. Programming Ruby: A Pragmatic Programmer’s

Guide. Addison-Wesley Professional, 1st edition, Dec. 2000.

[145] G. Tonti, J. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok. Se-

mantic web languages for policy representation and reasoning: A compari-

son of KAoS, rei, and ponder. In D. Fensel, K. Sycara, and J. Mylopoulos,

219

http://www.w3.org/TR/2004/REC-owl-ref-20040210/

editors, The SemanticWeb - ISWC 2003, volume 2870 of Lecture Notes in

Computer Science, chapter 27, pages 419–437. Springer Berlin / Heidelberg,

Berlin, Heidelberg, 2003.

[146] E. Torreborre. A bdd library for scala. Available at http://etorreborre.

github.io/specs2/, [Online] , Accessed: 2014-02-14.

[147] J. W. Tukey. Exploratory data analysis. Addison-Wesley series in behavioral

science : quantitative methods. Addison-Wesley, Reading (Mass.), 1977. On

spine: EDA.

[148] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch,

M. Johnson, S. Kulkarni, and J. Lott. Kaos policy and domain services:

Toward a description-logic approach to policy representation, deconfliction,

and enforcement. In Proceedings of the 4th IEEE International Workshop

on Policies for Distributed Systems and Networks, POLICY ’03, pages 93–,

Washington, DC, USA, 2003. IEEE Computer Society.

[149] D. C. Wang, A. W. Appel, J. L. Korn, and C. S. Serra. The zephyr abstract

syntax description language. In DSL, pages 213–228. USENIX, 1997.

[150] D. M. Weiss and C. T. R. Lai. Software Product-line Engineering: A Family-

based Software Development Process. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1999.

[151] D. Wijesekera and S. Jajodia. A propositional policy algebra for access con-

trol. ACM Trans. Inf. Syst. Secur., 6(2):286–325, May 2003.

[152] D. Wile. Lessons learned from real dsl experiments. Sci. Comput. Program.,

51(3):265–290, June 2004.

[153] H. Wu, J. Gray, and M. Mernik. Unit testing for Domain-Specific languages.

In W. Taha, editor, Domain-Specific Languages, volume 5658 of Lecture

Notes in Computer Science, chapter 7, pages 125–147. Springer Berlin / Hei-

delberg, Berlin, Heidelberg, 2009.

220

http://etorreborre.github.io/specs2/
http://etorreborre.github.io/specs2/

[154] N. S. Zalman. Making the method fit: An industrial experience in adopting

feature-oriented domain analysis (foda). In Proceedings of the 4th Interna-

tional Conference on Software Reuse, ICSR ’96, pages 233–, Washington,

DC, USA, 1996. IEEE Computer Society.

[155] H. Zhao, J. Lobo, and S. M. Bellovin. An algebra for integration and analysis

of ponder2 policies. In Proceedings of the 2008 IEEE Workshop on Policies

for Distributed Systems and Networks, POLICY ’08, pages 74–77, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

221

	Front cover template
	The Thesis (Revised_Version)(Amir_Aryanpour)
	Abstract
	Acknowledgements
	Declaration
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Industry Research
	Industry Support
	Research Support
	Industry Sponsorship/Encouragement

	Problem Statement
	Research Context
	Short-Term Benefits
	Long-Term Benefits

	Thesis Statement (Aims and Objectives)
	Scope and Limitations
	Research Methodologies

	Research Contribution
	Related Publications
	 Conferences
	 Books

	Thesis Outlines

	Related Work and Background
	Security Policy
	Security Policy Models
	Security Policy Languages
	Related Works
	A Framework for Multi-Policy Environment
	Representing OWL Based Security Policies
	Identified Areas for Improvements

	Summary
	Chapter Summary
	Research Contributions of the Chapter

	The Framework Overview and Design Challenges
	The Requirements of the Framework
	Architectural Overview of the Framework
	Overview of the ASPL
	The Next Steps
	Summary
	Chapter Summary
	Research Contributions of the Chapter

	Security Policy Languages
	Comparison of Security Policy Languages
	Requirement-Based Comparison
	Scenario-Based Comparison
	Criteria-Based Comparison
	More Comparison of Security Policy Languages

	Requirements for Choosing Security Policy Languages
	Blending All the Methods Together

	Overview of the Selected Policy Languages
	XACML
	Ponder
	Protune

	Summary
	Chapter Summary
	Research Contributions of the Chapter

	A New Algebra for Security Policy Languages
	Algebra for Security Policy Languages
	An Algebra for Composing Access Control Policies
	A Propositional Policy Algebra for Access Control

	An Algebra for Fine-Grained Integration of Security Policies
	Policy Semantics
	Policy Constants
	Operators Applied to Policies
	Expansion of Algebra
	Algebra Expressions
	Algebra Completeness

	Summary
	Chapter Summary
	Research Contributions of the Chapter

	Domain Specific Language
	How to Start the Design Phase
	Domain Specific Language
	DSL Stakeholders
	Boundaries of DSL
	Requirement for DSLs
	Advantages of DSL
	Disadvantages of DSL

	DLS Implementation Phase and Patterns
	Decision Phase
	Analysis Phase
	Design Phase
	 Implementation Phase
	Exploring Embedding Pattern
	Internal or External DSL

	 External DSL Implementation
	Anatomy of External DSL
	External DSL Implementation Patterns in Details

	Choosing a Programming Language
	Summary
	Chapter Summary
	Research Contributions of the Chapter

	Implementation of the Framework
	Software Methodology
	System Requirements
	High Level Design
	High Level Architecture of the Framework
	HLA Components

	Low Level Design
	Design Review Round 1
	Capturing Feedback

	Restructure of the Design
	Parser Combinators

	Detailed Design
	Enhancing the Framework
	Limitation of Access to the System
	Increasing the Accuracy of the Framework by Reasoning

	Testing and Evaluation
	Evaluation the Framework Against Software Requirements
	Evaluation the Framework Against Acceptance Criteria
	Evaluation of the Framework by Capturing Experts' Opinion

	Analysis of The Framework
	Summary
	Chapter Summary
	Research Contributions of the Chapter

	Conclusion and Future work
	Conclusion
	Further Work
	Expansion
	Security

	The Future of the Framework
	Microservices
	Appendices
	List of Open Source Software Used
	Policy Language Comparison
	JVM Language Comparison
	Requirement Gathering Questioner
	Survey Questioner

	References

