4 research outputs found

    TEC Response and Subsequent GPS Error Caused by the Most severe Geomagnetic Storm of Solar Cycle 24 at India

    Get PDF
    339-348This paper presents the response of low-latitude and mid-latitude ionosphere to a severe geomagnetic storm that occurred on 17 March 2015 at 0445 UT, and the subsequent effect of this storm on GPS error in the East-West (E-W) and North-South (N-S) directions. The Vertical Total Electron Content (VTEC) data has been analysed from three dual frequency GPS receivers, which were installed under the framework of the International GNSS Service (IGS). For each day of the year, the data is downloadable as a single file in the Receiver Independent Exchange Format (RINEX) from the IGS data portal. The VTEC values from the IGS are obtained at one minute intervals. Results show the variations in GPS derived VTEC during the severe geomagnetic storm. Negative ionospheric storms caused by composition changes are observed at mid-latitude region of Lucknow, while positive ionospheric storms caused by magnetospheric convection and Equatorial Ionospheric Anomaly (EIA) are prominent at low-latitude regions of Bangalore and Hyderabad. The maximum depletion in VTEC peak at mid-latitude region of Lucknow when compared to the quiet day mean VTEC was 61 percent during a negative ionospheric storm that occurred on 18 March 2015, and maximum enhancement in VTEC peak at low-latitude region of Bangalore and Hyderabad when compared to the quiet day mean VTEC was 26 percent and 21 percent respectively during an early positive ionospheric storm on 18 March 2015. Positive ionospheric storms caused by enhanced EIA and Prompt Penetration Electric Fields (PPEF) are prominent at low-latitudes. The highest GPS error during storm time was +7.2m and +11.3m in E-W and N-S directions respectively at Lucknow. The average GPS error in E-W and N-S directions during storm time was higher at the mid-latitude station of Lucknow

    TEC Response and Subsequent GPS Error Caused by the Most severe Geomagnetic Storm of Solar Cycle 24 at India

    Get PDF
    This paper presents the response of low-latitude and mid-latitude ionosphere to a severe geomagnetic storm that occurred on 17 March 2015 at 0445 UT, and the subsequent effect of this storm on GPS error in the East-West (E-W) and North-South (N-S) directions. The Vertical Total Electron Content (VTEC) data has been analysed from three dual frequency GPS receivers, which were installed under the framework of the International GNSS Service (IGS). For each day of the year, the data is downloadable as a single file in the Receiver Independent Exchange Format (RINEX) from the IGS data portal. The VTEC values from the IGS are obtained at one minute intervals. Results   show the variations in GPS derived VTEC during the severe geomagnetic storm. Negative ionospheric storms caused by composition changes are observed at mid-latitude region of Lucknow, while positive ionospheric storms caused by magnetospheric convection and Equatorial Ionospheric Anomaly (EIA) are prominent at low-latitude regions of Bangalore and Hyderabad. The maximum depletion in VTEC peak at mid-latitude region of Lucknow when compared to the quiet day mean VTEC was 61 percent during a negative ionospheric storm that occurred on 18 March 2015, and maximum enhancement in VTEC peak at low-latitude region of Bangalore and Hyderabad when compared to the quiet day mean VTEC was 26 percent and 21 percent respectively during an early positive ionospheric storm on 18 March 2015. Positive ionospheric storms caused by enhanced EIA and Prompt Penetration Electric Fields (PPEF) are prominent at low-latitudes. The highest GPS error during storm time was +7.2 m and +11.3 m in E-W and N-S directions respectively at Lucknow. The average GPS error in E-W and N-S directions during storm time was higher at the mid-latitude station of Lucknow

    Characterization of GPS-TEC in a low-latitude region over Thailand during 2010-2012

    No full text
    This paper presents the first results of vertical total electron content (VTEC) data from (1) a dual-frequency GPS receiver installed at the Chiang Mai University in Chiang Mai (CHGM, 18.480 N, 98.570 E) as part of SCINDA (Scintillation Network and Decision Aid) and (2) the International GNSS Service (IGS) station Pathum Wan (CUSV, 13.735 N, 100.533 E) with magnetic latitude of 8.69°N and 3.92°N respectively in Thailand, from August 2010 to July 2012. In the equatorial ionization anomaly (EIA) region, these two stations are separated at a distance of 668 km. Observed GPS-TEC values were found to be the highest between 1500 and 1900 Local Time (LT) throughout the study period at both the stations. The GPS-TEC data from both the stations was plotted diurnal, monthly and seasonal analyses were performed. The equinox (March, April, September, and October) and solstice (January, February, June, July, and December) periods had maximum and minimum diurnal peak variations, respectively, of the GPS-TEC. High TEC values are attributed to extreme solar ultra-violet ionization coupled with upward vertical E×B drift. A comparison of the GPS-TEC data from both the stations for the study period shows that the CHGM station recorded higher values of TEC than the CUSV station because of the formation of an ionization crest over the CHGM station. The GPS-TEC values also exhibited an increasing trend-because of the approach of solar cycle 24. For data validation, the diurnal, monthly, and seasonal variations in the measured TEC were compared with the TEC modelled in the International Reference Ionosphere (IRI) models (IRI-2007 and the recently released IRI-2012 model). The IRI-2007 shows good agreement with the data from 2010 to 2011 from both stations and IRI-2012 agrees well with the data from 2012 onwards compared to IRI-2007
    corecore