8 research outputs found

    Potential of Biochar as Cost Effective Adsorbent in Removal of Heavy Metals Ions From Aqueous Phase: A Mini Review

    Get PDF
    Due to industrialization and increasing population, wastewater treatment has become a big challenge. There are numerous techniques such as ion-exchange, adsorption, membrane filtration, coagulation, flocculation, floating and electrochemical approach developed for the remediation of contaminants from wastewater. But, now it is necessary to develop an approach which should has high efficiency, less expensive and environmental friendly, so that limitation of existing techniques can be overcome. Recent developments of biochar have attracted the researchers into this area. Different methods are discovered to synthesized biochar for the removal of pollutants from wastewater. In this review, biochar are elaborated and critically discussed which have reported for the removal of metallic pollutants present in waste water

    Eco-management of Wastewater by ZESTP

    Get PDF
    In present study, an evaluation of ZESTP (Zero Energy Sewage Treatment Plant) has been described as an alternative solution of sewage water treatment. This system has become widely famous because of having great absorption efficiencyof nutrients, simple construction and maintenance, relatively less costly as well as a strong process. After treatment of sewage water, the level of dissolve oxygen was increased up to 73% due to the enhanced numbers of photosynthetic organisms. Some aquatic macrophytes such as Eichhornia crassipes (Mart.) Solms, Pistia stratiotes L. and Hydrilla verticillata Casp were used in ZESTP for waste water treatment based on phytoremediation. ZESTP could reduce the around 84% turbidity, 46% electrical conductivity, 43% salinity, 74% acidity, 69% free CO2, 73% BOD, 44% COD, 70% suspended solids, 62% total hardness, 71% chloride, 59% cadmium, 51% iron, and 71% copper from the waste water. Naturally, some plants have capability are to retain and/or remove fatal chemicals which are present in sewage water. Moreover, macrophytes based ZESTP is a cost effective and an eco-friendly technique of sewage water treatment

    Hyperspectral sensing for turbid water quality monitoring in freshwater rivers: Empirical relationship between reflectance and turbidity and total solids

    Get PDF
    Total suspended solid (TSS) is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ) as well as brought to the laboratory for further analysis. To obtain the data set for this study, 160 in situ sample observations were carried out during campaigns from August to December, 2005. The water quality results were correlated with the reflectivity to determine the spectral characteristics and their relationship with turbidity and TSS. Furthermore, multiple-regression (MR) and artificial neural network (ANN) were used to model the transformation function between TSS concentration and turbidity levels of stream water, and the radiance measured by the spectroradiometer. The value of the turbidity and TSS correlation coefficient was 0.766, which implies that turbidity is significantly related to TSS in the Wu river basin. The results indicated that TSS and turbidity are positively correlated in a significant way across the entire spectrum, when TSS concentration and turbidity levels were under 800 mg·L(-1) and 600 NTU, respectively. Optimal wavelengths for the measurements of TSS and turbidity are found in the 700 and 900 nm range, respectively. Based on the results, better accuracy was obtained only when the ranges of turbidity and TSS concentration were less than 800 mg·L(-1) and less than 600 NTU, respectively and used rather than using whole dataset (R(2) = 0.93 versus 0.88 for turbidity and R(2) = 0.83 versus 0.58 for TSS). On the other hand, the ANN approach can improve the TSS retrieval using MR. The accuracy of TSS estimation applying ANN (R(2) = 0.66) was better than with the MR approach (R(2) = 0.58), as expected due to the nonlinear nature of the transformation model

    Evaluating the Ranking of Performance Variables in Flexible Manufacturing System through the Best-Worst Method

    No full text
    Flexible Manufacturing Systems (FMSs) provide a competitive edge in the ever-evolving manufacturing landscape, offering the agility to swiftly adapt to changing customer demands and product lifecycles. Nevertheless, the complex and interconnected nature of FMSs presents a distinct challenge: the evaluation and prioritization of performance variables. This study clarifies a conspicuous research gap by introducing a pioneering approach to evaluating and ranking FMS performance variables. The Best-Worst Method (BWM), a multicriteria decision-making (MCDM) approach, is employed to tackle this challenge. Notably, the BWM excels at resolving intricate issues with limited pairwise comparisons, making it an innovative tool in this context. To implement the BWM, a comprehensive survey of FMS experts from the German manufacturing industry was conducted. The survey, which contained 34 key performance variables identified through an exhaustive literature review and bibliometric analysis, invited experts to assess the variables by comparing the best and worst in terms of their significance to overall FMS performance. The outcomes of the BWM analysis not only offer insights into the factors affecting FMS performance but, more importantly, convey a nuanced ranking of these factors. The findings reveal a distinct hierarchy: the “Quality (Q)” factor emerges as the most critical, followed by “Productivity (P)” and “Flexibility (F)”. In terms of contributions, this study pioneers a novel and comprehensive approach to evaluating and ranking FMS performance variables. It bridges an evident research gap and contributes to the existing literature by offering practical insights that can guide manufacturing companies in identifying and prioritizing the most crucial performance variables for enhancing their FMS competitiveness. Our research acknowledges the potential introduction of biases through expert opinion, delineating the need for further exploration and comparative analyses in diverse industrial contexts. The outcomes of this study bear the potential for cross-industry applicability, laying the groundwork for future investigations in the domain of performance evaluation in manufacturing systems

    Facile Synthesis and Characterization of N-Doped TiO2 Photocatalyst and Its Visible-Light Activity for Photo-Oxidation of Ethylene

    Get PDF
    A facile wet chemical method was adopted for preparing highly photoactive nitrogen doped TiO2 (N-TiO2) powders with visible responsive capability, which could be achieved by the hydrolysis of titanium isopropoxide (TTIP) in the ammonium hydroxide precursor solution in various concentrations and then calcined at different temperatures. The N-TiO2 powders were characterized, and the photocatalytic activity was evaluated for the photocatalytic oxidation of ethylene gas under visible light irradiation to optimize the synthesizing conditions of N-TiO2 catalyst. The N-TiO2 photocatalytic powders were calcined in a range of temperatures from 300 to 600°C and obviously found to have greater photocatalytic activities than commercial TiO2 P25. The strong absorption in the visible light region could be ascribed to good crystallization and adapted sinter temperature of as prepared sample. XPS test demonstrated that the N was doped into TiO2 lattice and made an interstitial formation (Ti-O-N), and N doping also retarded the phase transformation from anatase to rutile as well. The N-TiO2 catalyst prepared with 150 mL ammonium hydroxide added and calcined at 500°C showed the best photocatalytic activity. The experimental results also proved the enhanced photoactivity of N-TiO2 material depends on the synthesizing conditions

    Significance of MOF adsorbents in uranium remediation from water

    No full text
    International audienceUranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach. MOFs possess unique properties like high surface area, high porosity, adjustable pore size, etc. This makes them promising adsorbents for the removal of uranium from contaminated water. In this paper, sources of uranium in the water environment, human health disorders, and application of the different types of MOFs as well as the mechanisms of uranium removal have been discussed meticulously
    corecore