5 research outputs found

    Cow Dung Is a Novel Feedstock for Fibrinolytic Enzyme Production from Newly Isolated Bacillus sp. IND7 and Its Application in In Vitro Clot Lysis

    Get PDF
    Bacterial fibrinolytic enzymes find great applications to treat and prevent cardiovascular diseases. The novel fibrinolytic enzymes from food grade organisms are useful for thrombolytic therapy. This study reports fibrinolytic enzyme production by Bacillus sp. IND7 in solid-state fermentation (SSF). In this study, cow dung was used as the cheap substrate for the production of fibrinolytic enzyme. Enzyme production was primarily improved by optimizing the nutrient and physical factors by one-variable-at-a-time approach. A statistical method (two-level full factorial design) was applied to investigate the significant variables. Of the different variables, pH, starch, and beef extract significantly influenced on the production of fibrinolytic enzyme (p < 0.05). The optimum levels of these significant factors were further investigated using response surface methodology. The optimum conditions for enhanced fibrinolytic enzyme production were 1.23% (w/w) starch and 0.3 % (w/w) beef extract with initial medium pH 9.0. Under the optimized conditions, cow dung substrate yielded 8,345 U/g substrate, and an overall 2.5-fold improvement in fibrinolytic enzyme production was achieved due to its optimization. This is the first report of fibrinolytic enzyme production using cow dung substrate from Bacillus sp. in SSF. The crude enzyme displayed potent activity on zymography and digested goat blood clot completely in in vitro condition

    GFF file, CDS and Protein Sequences.rar

    No full text
    <b>Genome annotation data of earthworm <i>Eisenia fetida</i></b

    Data on genome annotation and analysis of earthworm Eisenia fetida

    No full text
    The present article reports the complete draft genome annotation of earthworm Eisenia fetida, obtained from the manuscript entitled “Timing and Scope of Genomic Expansion within Annelida: Evidence from Homeoboxes in the Genome of the Earthworm E. fetida” (Zwarycz et al., 2015) and provides the data on the repetitive elements, protein coding genes and noncoding RNAs present in the genome dataset of the species. The E. fetida protein coding genes were predicted from AUGUSTUS gene prediction and subsequently annotated based on their sequence similarity, Gene Ontology (GO) functional terms, InterPro domains, Clusters of Orthologous Groups (COGs) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways information. The genome wide comparison of orthologous clusters and phylogenomic analysis of the core genes were performed to understand the events of genome evolution and genomic diversity between E. fetida and its related metazoans. In addition, the genome dataset was screened to identify the crucial stem cell markers, regeneration specific genes and immune-related genes and their functionally enriched GO terms were predicted from Fisher׳s enrichment analysis. The E. fetida genome annotation data containing the GFF (general feature format) annotation file, predicted coding gene sequences and translated protein sequences were deposited to the figshare repository under the DOI: https://doi.org/10.6084/m9.figshare.6142322.v1. Keywords: Eisenia fetida, Genome annotation, Orthologous groups, Regeneratio

    Novel Sequential Screening and Enhanced Production of Fibrinolytic Enzyme by Bacillus sp. IND12 Using Response Surface Methodology in Solid-State Fermentation

    No full text
    Fibrinolytic enzymes have wide applications in clinical and waste treatment. Bacterial isolates were screened for fibrinolytic enzyme producing ability by skimmed milk agar plate using bromocresol green dye, fibrin plate method, zymography analysis, and goat blood clot lysis. After these sequential screenings, Bacillus sp. IND12 was selected for fibrinolytic enzyme production. Bacillus sp. IND12 effectively used cow dung for its growth and enzyme production (687±6.5 U/g substrate). Further, the optimum bioprocess parameters were found out for maximum fibrinolytic enzyme production using cow dung as a low cost substrate under solid-state fermentation. Two-level full-factorial experiments revealed that moisture, pH, sucrose, peptone, and MgSO4 were the vital parameters with statistical significance (p<0.001). Three factors (moisture, sucrose, and MgSO4) were further studied through experiments of central composite rotational design and response surface methodology. Enzyme production of optimized medium showed 4143±12.31 U/g material, which was more than fourfold the initial enzyme production (978±36.4 U/g). The analysis of variance showed that the developed response surface model was highly significant (p<0.001). The fibrinolytic enzyme digested goat blood clot (100%), chicken skin (83±3.6%), egg white (100%), and bovine serum albumin (29±4.9%)

    Data on genome sequencing, analysis and annotation of a pathogenic Bacillus cereus 062011msu

    No full text
    Bacillus species 062011 msu is a harmful pathogenic strain responsible for causing abscessation in sheep and goat population studied by Mariappan et al. (2012) [1]. The organism specifically targets the female sheep and goat population and results in the reduction of milk and meat production. In the present study, we have performed the whole genome sequencing of the pathogenic isolate using the Ion Torrent sequencing platform and generated 458,944 raw reads with an average length of 198.2 bp. The genome sequence was assembled, annotated and analysed for the genetic islands, metabolic pathways, orthologous groups, virulence factors and antibiotic resistance genes associated with the pathogen. Simultaneously the 16S rRNA sequencing study and genome sequence comparison data confirmed that the strain belongs to the species Bacillus cereus and exhibits 99% sequence homo;logy with the genomes of B. cereus ATCC 10987 and B. cereus FRI-35. Hence, we have renamed the organism as Bacillus cereus 062011msu. The Whole Genome Shotgun (WGS) project has been deposited at DDBJ/ENA/GenBank under the accession NTMF00000000 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA404036(SAMN07629099)). Keywords: Bacillus cereus, Genome sequencing, Abscessation, Virulence factor
    corecore