7 research outputs found

    Scientific basics of technology for manufacturing conserved foodstuffs from oceanic hydrobionts

    No full text
    Available from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    Biological activity of kencur (Kaempferia galanga L.) against SARS-CoV-2 main protease: In silico study

    No full text
    COVID-19 is a syndrome affecting pulmonary function but rather in serious conditions leads to death. Kencur (Kaempferia galanga L.) is a type of rhizome plant in Indonesia that is used as an herbal medicine called Jamu because it is believed to be able to cure various types of diseases. One of which is for anti-virus. The goal of this study was to see how effective the compounds in kencur are against COVID-19 with a molecular docking strategy. Kencur biological activities were obtained from the library and the design of the Acute Respiratory Syndrome Main protease (Mpro) has been gained from the protein data bank website. In addition, the biological activities in kencur were examined utilizing Lipinski's five-point concept was used to evaluate their substance molecular characteristics. Molecular docking analysis was performed with the PyRx Virtual Screening Tool software. The PyRx program was used for molecular docking simulation. While, the Discovery Studio Visualizer program was used to visualize the interaction between SARS-CoV-2 (Mpro) and the pharmacologically active metabolites in kencur. The docking evaluation on three antiviral substances revealed that Quercetin had the lowest binding energy when bound with Mpro and thus had the greatest potential as a viral inhibitor

    Biological Activity of Kencur (Kaempferia Galanga L.) Against SARS-CoV-2 Main Protease: in Silico Study

    Full text link
    COVID-19 is a syndrome affecting pulmonary function but rather in serious conditions leads to death. Kencur (Kaempferia galanga L.) is a type of rhizome plant in Indonesia that is used as an herbal medicine called Jamu because it is believed to be able to cure various types of diseases. One of which is for anti-virus. The goal of this study was to see how effective the compounds in kencur are against COVID-19 with a molecular docking strategy. Kencur biological activities were obtained from the library and the design of the Acute Respiratory Syndrome Main protease (Mpro) has been gained from the protein data bank website. In addition, the biological activities in kencur were examined utilizing Lipinski's five-point concept was used to evaluate their substance molecular characteristics. Molecular docking analysis was performed with the PyRx Virtual Screening Tool software. The PyRx program was used for molecular docking simulation. While, the Discovery Studio Visualizer program was used to visualize the interaction between SARS-CoV-2 (Mpro) and the pharmacologically active metabolites in kencur. The docking evaluation on three antiviral substances revealed that Quercetin had the lowest binding energy when bound with Mpro and thus had the greatest potential as a viral inhibitor

    Anomalous peroxidase activity of cytochrome c is the primary pathogenic target in Barth syndrome

    Get PDF
    Barth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism. Using genetic, biochemical/biophysical, redox lipidomic and computational approaches, we reveal mechanisms of peroxidase-competent MLCL-cyt c complexation and increased phospholipid peroxidation in different TAZ-deficient cells and animal models and in pre-transplant biopsies from hearts of patients with BTHS. A specific mitochondria-targeted anti-peroxidase agent inhibited MLCL-cyt c peroxidase activity, prevented phospholipid peroxidation, improved mitochondrial respiration of TAZ-deficient C2C12 myoblasts and restored exercise endurance in a BTHS Drosophila model. Targeting MLCL-cyt c peroxidase offers therapeutic approaches to BTHS treatment.</p

    Anomalous peroxidase activity of cytochrome c is the primary pathogenic target in Barth syndrome

    Get PDF
    Barth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism. Using genetic, biochemical/biophysical, redox lipidomic and computational approaches, we reveal mechanisms of peroxidase-competent MLCL-cyt c complexation and increased phospholipid peroxidation in different TAZ-deficient cells and animal models and in pre-transplant biopsies from hearts of patients with BTHS. A specific mitochondria-targeted anti-peroxidase agent inhibited MLCL-cyt c peroxidase activity, prevented phospholipid peroxidation, improved mitochondrial respiration of TAZ-deficient C2C12 myoblasts and restored exercise endurance in a BTHS Drosophila model. Targeting MLCL-cyt c peroxidase offers therapeutic approaches to BTHS treatment.</p

    Anomalous peroxidase activity of cytochrome c is the primary pathogenic target in Barth syndrome

    No full text
    Barth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism. Using genetic, biochemical/biophysical, redox lipidomic and computational approaches, we reveal mechanisms of peroxidase-competent MLCL-cyt c complexation and increased phospholipid peroxidation in different TAZ-deficient cells and animal models and in pre-transplant biopsies from hearts of patients with BTHS. A specific mitochondria-targeted anti-peroxidase agent inhibited MLCL-cyt c peroxidase activity, prevented phospholipid peroxidation, improved mitochondrial respiration of TAZ-deficient C2C12 myoblasts and restored exercise endurance in a BTHS Drosophila model. Targeting MLCL-cyt c peroxidase offers therapeutic approaches to BTHS treatment.</p

    Anomalous peroxidase activity of cytochrome c is the primary pathogenic target in Barth syndrome

    No full text
    Barth syndrome (BTHS) is a life-threatening genetic disorder with unknown pathogenicity caused by mutations in TAFAZZIN (TAZ) that affect remodeling of mitochondrial cardiolipin (CL). TAZ deficiency leads to accumulation of mono-lyso-CL (MLCL), which forms a peroxidase complex with cytochrome c (cyt c) capable of oxidizing polyunsaturated fatty acid-containing lipids. We hypothesized that accumulation of MLCL facilitates formation of anomalous MLCL-cyt c peroxidase complexes and peroxidation of polyunsaturated fatty acid phospholipids as the primary BTHS pathogenic mechanism. Using genetic, biochemical/biophysical, redox lipidomic and computational approaches, we reveal mechanisms of peroxidase-competent MLCL-cyt c complexation and increased phospholipid peroxidation in different TAZ-deficient cells and animal models and in pre-transplant biopsies from hearts of patients with BTHS. A specific mitochondria-targeted anti-peroxidase agent inhibited MLCL-cyt c peroxidase activity, prevented phospholipid peroxidation, improved mitochondrial respiration of TAZ-deficient C2C12 myoblasts and restored exercise endurance in a BTHS Drosophila model. Targeting MLCL-cyt c peroxidase offers therapeutic approaches to BTHS treatment.</p
    corecore