14 research outputs found

    The Symbiome of Llaveia Cochineals (Hemiptera: Coccoidea: Monophlebidae) Includes a Gammaproteobacterial Cosymbiont Sodalis TME1 and the Known Candidatus Walczuchella monophlebidarum

    Get PDF
    The genome and transcriptome of the endosymbiotic flavobacterium Candidatus Walczuchella monophlebidarum revealed its role in the synthesis of essential amino acids for its host, the wax cochineal Llaveia axin axin. There were, however, missing genes in the endosymbiont for some biosynthetic pathways. Here, we characterized TME1, another cochineal symbiont that may metabolically complement Walczuchella. TME1 was ascribed to the gammaproteobacterial genus Sodalis on a phylogenomic basis using gene sequences from 143 proteins core genome sequences and the core average nucleotide identity (ANI) confirmed its position. Additionally, we describe Sodalis as a coherent genus. TME1 genome is around 3.4 Mb and has complete gene sequences for the biosynthesis of 10 essential amino acids, for polyamines, flagella, nitrate respiration, and detoxification among many others. Transcripts from ovaries and bacteriomes allowed the identification of differentially transcribed genes from the endosymbionts and host. Highly transcribed genes were identified in TME1 and transcripts involved in amino acid biosynthesis were found. We review here that cosymbionts that derived from different bacterial classes and genera seem to be advantageous for insects that have Flavobacteria as the primary endosymbionts

    "Los aspectos estéticos de la ciencia."

    No full text
    8p

    Metatranscriptomic Analysis of the Bacterial Symbiont Dactylopiibacterium carminicum from the Carmine Cochineal Dactylopius coccus (Hemiptera: Coccoidea: Dactylopiidae)

    No full text
    The scale insect Dactylopius coccus produces high amounts of carminic acid, which has historically been used as a pigment by pre-Hispanic American cultures. Nowadays carmine is found in food, cosmetics, and textiles. Metagenomic approaches revealed that Dactylopius spp. cochineals contain two Wolbachia strains, a betaproteobacterium named Candidatus Dactylopiibacterium carminicum and Spiroplasma, in addition to different fungi. We describe here a transcriptomic analysis indicating that Dactylopiibacterium is metabolically active inside the insect host, and estimate that there are over twice as many Dactylopiibacterium cells in the hemolymph than in the gut, with even fewer in the ovary. Albeit scarce, the transcripts in the ovaries support the presence of Dactylopiibacterium in this tissue and a vertical mode of transmission. In the cochineal, Dactylopiibacterium may catabolize plant polysaccharides, and be active in carbon and nitrogen provisioning through its degradative activity and by fixing nitrogen. In most insects, nitrogen-fixing bacteria are found in the gut, but in this study they are shown to occur in the hemolymph, probably delivering essential amino acids and riboflavin to the host from nitrogen substrates derived from nitrogen fixation

    Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal Insect Dactylopius coccus (Hemiptera: Dactylopiidae)

    No full text
    Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia. Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA

    Endosymbiotic microorganisms of scale insects

    No full text
    Parte del éxito evolutivo y ecológico de los insectos se atribuye a las bacterias y hongos asociados a ellos queamplían sus capacidades metabólicas o les permiten resistir estrés o parasitosis. Las asociaciones posiblemente seoriginaron hace cientos de millones de años y el resultado es una interdependencia que, en algunos casos, insectoy bacteria no pueden existir separadamente, lo que ha llevado a una reducción significativa de los genomas de lossimbiontes bacterianos y a la transferencia por vía materna de éstos a la progenie. Recientemente, el estudio delos simbiontes de insectos ha cobrado gran interés y se han identificado algunas de sus funciones biológicas dentrode los hospederos. Los insectos escama o cochinillas se alimentan de la savia de las plantas, por lo que requierensimbiontes para compensar las deficiencias de su dieta, rica en carbono pero pobre en compuestos nitrogenados.Algunas de las plagas más agresivas de los cultivos agrícolas son los insectos escama. En este artículo revisamos lossimbiontes de la cochinilla del carmín y de la laca, de gran interés comercial y artesanal. En las cochinillas que seestudiaron encontramos diversas comunidades microbianas con la capacidad de sintetizar aminoácidos, vitaminas,fijar nitrógeno o reciclar los productos de desecho del metabolismo nitrogenado

    Endosymbiotic microorganisms of scale insects

    No full text
    Parte del éxito evolutivo y ecológico de los insectos se atribuye a las bacterias y hongos asociados a ellos que amplían sus capacidades metabólicas o les permiten resistir estrés o parasitosis. Las asociaciones posiblemente se originaron hace cientos de millones de años y el resultado es una interdependencia que, en algunos casos, insecto y bacteria no pueden existir separadamente, lo que ha llevado a una reducción significativa de los genomas de los simbiontes bacterianos y a la transferencia por vía materna de éstos a la progenie. Recientemente, el estudio de los simbiontes de insectos ha cobrado gran interés y se han identificado algunas de sus funciones biológicas  dentro de los hospederos. Los insectos escama o cochinillas se alimentan de la savia de las plantas, por lo que requieren simbiontes para compensar las deficiencias de su dieta, rica en carbono pero pobre en compuestos nitrogenados. Algunas de las plagas más agresivas de los cultivos agrícolas son los insectos escama. En este artículo revisamos los simbiontes de la cochinilla del carmín y de la laca, de gran interés comercial y artesanal. En las cochinillas que se estudiaron encontramos diversas comunidades microbianas con la capacidad de sintetizar aminoácidos, vitaminas, fijar nitrógeno o reciclar los productos de desecho del metabolismo nitrogenado.The evolutionary and ecological success of insects is largely due to their associated bacteria and fungi that expand their metabolic capacities or allow them to resist stress or parasites. Some of these associations possibly originated hundreds of millions of years ago and have resulted in such interdependence that in some cases the insect and bacteria may not exist separately. This has also led to a significant reduction in the genome size of bacterial symbionts and to the maternal transfer of symbionts to progeny. The study of insect symbionts has recently gained great interest and some of the biological functions of symbionts within hosts have been identified. Scale insects or cochineals feed on the sap of plants, which is rich in carbon but poor in nitrogen and so they require symbionts to compensate for diet deficiencies. Some scale insects are devastating crop pests. In this article, we review the symbionts of some scale insects focusing on carmine- and wax cochineals, which have commercial, art and craft interest. In the cochineals studied we found diverse microbial communities that can synthesize amino acids, vitamins, fix nitrogen or recycle the waste products of nitrogen metabolism
    corecore