3 research outputs found

    Oxygen-Evolving Mn Cluster in Photosystem II: The Protonation Pattern and Oxidation State in the High-Resolution Crystal Structure

    No full text
    Extensive quantum chemical DFT calculations were performed on the high-resolution (1.9 Å) crystal structure of photosystem II in order to determine the protonation pattern and the oxidation states of the oxygen-evolving Mn cluster. First, our data suggest that the experimental structure is not in the S<sub>1</sub>-state. Second, a rather complete set of possible protonation patterns is studied, resulting in very few alternative protonation patterns whose relevance is discussed. Finally, we show that the experimental structure is a mixture of states containing highly reduced forms, with the largest contribution (almost 60%) from the S<sub>–3</sub>-state, Mn­(II,II,III,III)

    Exploring the Possible Role of Glu286 in C<i>c</i>O by Electrostatic Energy Computations Combined with Molecular Dynamics

    No full text
    Cytochrome <i>c</i> oxidase (C<i>c</i>O) is a central enzyme in aerobic life catalyzing the conversion of molecular oxygen to water and utilizing the chemical energy to pump protons and establish an electrochemical gradient. Despite intense research, it is not understood how C<i>c</i>O achieves unidirectional proton transport and avoids short circuiting the proton pump. Within this work, we analyzed the potential role of Glu286 as a proton valve. We performed unconstrained MD simulations of C<i>c</i>O with an explicit membrane for up to 80 ns. Those MD simulations revealed that deprotonated Glu286 (Glu286-) is repelled by the negatively charged propionic acid PRD of heme a<sub>3</sub>. Thus, it destabilizes a potential linear chain of waters in the hydrophobic cavity connecting Glu286 with PRD and the binuclear center (BNC). Conversely, protonated Glu286 (Glu286H) may remain in an upward position (oriented toward PRD) and can stabilize the connecting linear water chain in the hydrophobic cavity. We calculated the p<i>K</i><sub>a</sub> of Glu286 under physiological conditions to be above 12, but this value decreases to about 9 under increased water accessibility of Glu286. The latter value is in accordance with experimental measurements. In the time course of MD simulation, we also observed conformations where Glu286 bridges between water molecules located on both sides (the D channel being connected to the N side and the hydrophobic cavity), which might lead to proton backflow

    Merging Structural Information from X‑ray Crystallography, Quantum Chemistry, and EXAFS Spectra: The Oxygen-Evolving Complex in PSII

    No full text
    Structural data of the oxygen-evolving complex (OEC) in photosystem II (PSII) determined by X-ray crystallography, quantum chemistry (QC), and extended X-ray absorption fine structure (EXAFS) analyses are presently inconsistent. Therefore, a detailed study of what information can be gained about the OEC through a comparison of QC and crystallographic structure information combined with the information from range-extended EXAFS spectra was undertaken. An analysis for determining the precision of the atomic coordinates of the OEC by QC is carried out. OEC model structures based on crystallographic data that are obtained by QC from different research groups are compared with one another and with structures obtained by high-resolution crystallography. The theory of EXAFS spectra is summarized, and the application of EXAFS spectra to the experimental determination of the structure of the OEC is detailed. We discriminate three types of parameters entering the formula for the EXAFS spectrum: (1) model-independent, predefined, and fixed; (2) model-dependent that can be computed or adjusted; and (3) model-dependent that must be adjusted. The information content of EXAFS spectra is estimated and is related to the precision of atomic coordinates and resolution power to discriminate different atom-pair distances of the OEC. It is demonstrated how a precise adjustment of atomic coordinates can yield a nearly perfect representation of the experimental OEC EXAFS spectrum, but at the expense of overfitting and losing the knowledge of the initial OEC model structure. Introducing a novel type of penalty function, it is shown that moderate adjustment of atomic coordinates to the EXAFS spectrum limited by constraints avoids overfitting and can be used to validate different OEC model structures. This technique is used to identify the OEC model structures whose computed OEC EXAFS spectra agree best with the measured spectrum. In this way, the most likely S-state and protonation pattern of the OEC for the most recent high-resolution crystal structure of PSII are determined. We find that the X-ray free-electron laser (XFEL) structure is indeed not significantly affected by exposure to XFEL pulses and thus results in a radiation-damage-free model of the OEC
    corecore