2 research outputs found

    An empirical approach for evaluating the usability of model-driven tools

    Get PDF
    MDD tools are very useful to draw conceptual models and to automate code generation. Even though this would bring many benefits, wide adoption of MDD tools is not yet a reality. Various research activities are being undertaken to find why and to provide the required solutions. However, insufficient research has been done on a key factor for the acceptance of MDD tools: usability. With the help of end-users, this paper presents a framework to evaluate the usability of MDD tools. The framework will be used as a basis for a family of experiments to get clear insights into the barriers to usability that prevent MDD tools from being widely adopted in industry. To illustrate the applicability of our framework, we instantiated it for performing a usability evaluation of a tool named INTEGRANOVA. Furthermore, we compared the outcome of the study with another usability evaluation technique based on ergonomic criteria.This work has been developed with the support of the Intra European Marie Curie Fellowship Grant 50911302 PIEF-2010, MICINN (TIN2008-00555, PROS-Req TIN2010-19130-C02-02), GVA (ORCA PROMETEO/2009/015), and co-financed with ERDF. We also acknowledge the support of the ITEA2 Call 3 UsiXML (20080026) and financed by the MITYC under the project TSI-020400-2011-20. Our thanks also to Ignacio Romeu for the video data gathering setup.Condori-Fernandez, N.; Panach Navarrete, JI.; Baars, AI.; Vos, TE.; Pastor López, O. (2013). An empirical approach for evaluating the usability of model-driven tools. Science of Computer Programming. 78(11):2245-2258. https://doi.org/10.1016/j.scico.2012.07.017S22452258781

    Evolutionary functional black-box testing in an industrial setting

    Full text link
    During the past years, evolutionary testing research has reported encouraging results for automated functional (i.e. black-box) testing. However, despite promising results, these techniques have hardly been applied to complex, real-world systems and as such, little is known about their scalability, applicability, and acceptability in industry. In this paper, we describe the empirical setup used to study the use of evolutionary functional testing in industry through two case studies, drawn from serial production development environments at Daimler and Berner & Mattner Systemtechnik, respectively. Results of the case studies are presented, and research questions are assessed based on them. In summary, the results indicate that evolutionary functional testing in an industrial setting is both scalable and applicable. However, the creation of fitness functions is time-consuming. Although in some cases, this is compensated by the results, it is still a significant factor preventing functional evolutionary testing from more widespread use in industry.This work is supported by EU grant IST-33472 (EvoTest). For their support and help, we would like to thank Mark Harman, Kiran Lakhotia and Youssef Hassoun from Kings College London; Marc Schoenauer and Luis da Costa from INRIA; Jochen Hansel from Fraunhofer FIRST; Dimitar Dimitrov and Ivaylo Spasov from RILA; and Dimitris Togias from European Dynamics.Vos ., TE.; Lindlar, FF.; Wilmes, B.; Windisch, A.; Baars, AI.; Kruse, PM.; Gross, H.... (2013). Evolutionary functional black-box testing in an industrial setting. Software Quality Journal. 21(2):259-288. doi:10.1007/s11219-012-9174-yS259288212Description of evolution engine parameters. http://guide.gforge.inria.fr/eeparams/EEngineParameters.pdf . Last accessed April 19, 2011.ETF user manual and cookbook. http://evotest.iti.upv.es . Last accessed April 13, 2011.GUIDE. http://gforge.inria.fr/projects/guide/ . Last accessed April 13, 2011.Evotest. http://evotest.iti.upv.es (2006). Last accessed April 13, 2011.Arcuri, A., White, D. R., Clark, J., & Yao, X. (2008). Multi-objective improvement of software using co-evolution and smart seeding. In: X. Li, M. Kirley, M. Zhang, D. G. Green, V. Ciesielski, H. A. Abbass, Z. Michalewicz, T. Hendtlass, K. Deb, K. C. Tan, J. Branke, & Y. Shi (Eds.), Proceedings of the 7th international conference on simulated evolution and learning (SEAL ’08), LNCS (Vol. 5361, pp. 61–70). Melbourne, Australia: Springer.Baresel, A., Pohlheim, H., & Sadeghipour, S. (2003). Structural and functional sequence test of dynamic and state-based software with evolutionary algorithms. In GECCO (pp. 2428–2441).Beizer B. (1990). Software testing techniques. London: International Thomson Computer Press.Briand L. C. (2007). A critical analysis of empirical research in software testing. In: Empirical software engineering and measurement, 2007. First International Symposium on ESEM 2007 (pp. 1–8).Bühler, O., & Wegener, J. (2004). Automatic testing of an autonomous parking system using evolutionary computation. In Proceedings of SAE 2004 world congress (pp. 115–122).Bühler, O., & Wegener, J. (2008). Evolutionary functional testing. Computers & Operations Research, 35(10), 3144–3160.Chan, B., Denzinger, J., Gates, D., Loose, K., & Buchanan, J. (2004). Evolutionary behaviour testing of commercial computer games. In Proceedings of CEC 2004, Portland (pp. 125–132).DaCosta, L., Fialho, A., Schoenauer, M., & Sebag, M. (2008). Adaptive operator selection with dynamic multi-armed bandits. In Proceedings of the 10th annual conference on genetic and evolutionary computation, GECCO ’08 (pp. 913–920). New York, NY: ACM. DOI http://doi.acm.org/10.1145/1389095.1389272 . http://doi.acm.org/10.1145/1389095.1389272 .Fewster, M., & Graham, D. (1999). Software test automation: effective use of test execution tools. New York, NY: ACM Press/Addison-Wesley Publishing Co.Goldberg, D.~E. (1989). Genetic algorithms in search, optimization and machine learning. Boston: Addison Wesley.Grochtmann, M., & Wegener, J. (1998). Evolutionary testing of temporal correctness. In: Proceedings of the 2nd international software quality week Europe (QWE 1998). Brussels, Belgium.Gros, H. G. (2003). Evaluation of dynamic, optimisation-based worst-case execution time analysis. In: Proceedings of the international conference on information technology: Prospects and challenges in the 21st century, (Vol. 1, pp. 8–14).Gross, H., Kruse, P. M., Wegener, J., Vos, T. (2009). Evolutionary white-box software test with the evotest framework: A progress report. In ICSTW ’09: Proceedings of the IEEE international conference on software testing, verification, and validation workshops (pp. 111–120). IEEE Computer Society, Washington, DC, USA.Harman, M., Hu, L., Hierons, R., Baresel, A., & Sthamer, H. (2002). Improving evolutionary testing by flag removal. In Proceedings of the genetic and evolutionary computation conference (GECCO 2002) (pp. 1233 – 1240). Morgan Kaufmann, New York, USA.Holland, J.H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.Jones, B., Sthamer, H., & Eyres, D. (1996). Automatic structural testing using genetic algorithms. The Software Engineering Journal, 11(5), 299–306.Juristo, N., Moreno, A., & Vegas, S. (2004). Reviewing 25 years of testing technique experiments. Journal of Empirical Software Engineering 9(1), 7–44.Keijzer, M., Merelo, J. J., Romero, G., & Schoenauer, M. (2001). Evolving objects: A general purpose evolutionary computation library. In Artificial evolution (pp. 231–244). http://citeseer.ist.psu.edu/keijzer01evolving.html .Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., Emam, K. E., et al. (2002). Preliminary guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering, 28(8), 721–734.Klimke, A. (2003) How to access Matlab from Java, IANS report 2003/005. Tech. rep., University of Stuttgart. http://preprints.ians.uni-stuttgart.de .Kruse, P. M., Wegener, J., & Wappler, S. (2009). A highly configurable test system for evolutionary black-box testing of embedded systems. In GECCO ’09: Proceedings of the 11th annual conference on genetic and evolutionary computation (pp. 1545–1552). New York, NY: ACM. http://doi.acm.org/10.1145/1569901.1570108 .Lethbridge, T. C., Sim, S. E., & Singer, J. (2005). Studying software engineers: Data collection techniques for software field studies. Empirical Software Engineering, 10(3), 311–341.Lindlar, F., Windisch, A., & Wegener, J. (2010). Integrating model-based testing with evolutionary functional testing. In Proceedings of the 3rd international conference on software testing, verification, and validation workshops (ICSTW 2010) (pp. 163–172). Washington, DC: IEEE Computer Society.McMinn, P. (2004). Search-based software test data generation: A survey. Software Testing, Verification and Reliability, 14(2), 105–156.McMinn, P. (2011). Search-based software testing: Past, present and future. In Proceedings of the 4th international workshop on search-based software testing (SBST 2011).Messina. http://www.berner-mattner.com/en/automotive-messina.php . Last accessed Feb 3, 2010.Mueller, F., & Wegener, J. (1998). A comparison of static analysis and evolutionary testing for the verification of timing constraints. In RTAS ’98: Proceedings of the 4th IEEE real-time technology and applications symposium (p. 144). Washington, DC: IEEE Computer Society.Pargas, R. P., Harrold, M. J., & Peck, R. R. (1999). Test-data generation using genetic algorithms. Journal of Software Testing, Verification and Reliability, 9(4), 263–282.Perry, D. E., Porter, A. A., & Votta, L. G. (2000). Empirical studies of software engineering: A roadmap. In: ICSE ’00: Proceedings of the conference on the future of software engineering, (pp. 345–355). ACM.Perry, D. E., Sim, S. E., & Easterbrook, S. (2005). Case studies for software engineers. In SEW ’05: Proceedings of the 29th annual IEEE/NASA software engineering workshop—Tutorial notes (pp. 96–159). Washington, DC: IEEE Computer Society.Pohlheim, H. (2000). Evolutionäre algorithmen: Verfahren, operatoren und hinweise für die Praxis. Springer, Berlin: Heidelberg [u.a.].Sthamer, H., & Wegener, J. (2002). Using evolutionary testing to improve efficiency and quality in software testing. In Proceedings of 2nd Asia-Pacific conference on software testing.Tlili, M., Sthamer, H., Wappler, S., & Wegener, J. (2006). Improving evolutionary real-time testing by seeding structural test data. In Proceedings of the congress on evolutionary computation (CEC) (pp. 3227–3233). IEEE.Tlili, M., Wappler, S., Sthamer, H., & Wegener, J. (2006). Improving evolutionary real-time testing. In Proceedings of the 8th annual conference on genetic and evolutionary computation (GECCO) (pp. 1917–1924). New York: ACM Press.Tracey, N., Clark, J., Mander, K., & McDermid, J. (2000). Automated test-data generation for exception conditions. Software: Practice and Experience, 30(1), 61–79.Vos, T., Baars, A., Lindlar, F., Kruse, P., Windisch, A., & Wegener, J. (2010). Industrial scaled automated structural testing with the evolutionary testing tool. In Proceedings of the 3rd international conference on software testing, verification and validation (ICST2010), Paris (France) (pp. 175–184). IEEE Computer Society.Wegener, J., Buhr, K., & Pohlheim, H. (2002). Automatic test data generation for structural testing of embedded software systems by evolutionary testing. In GECCO ’02: Proceedings of the genetic and evolutionary computation conference (pp. 1233–1240). San Francisco, CA: Morgan Kaufmann Publishers Inc.Wegener, J., Grimm, K., Grochtmann, M., Sthamer, H., & Jones, B. (1996). Systematic testing of real-time systems. In Proceedings of the 4th European international conference on software testing, analysis and review. Amsterdam, The Netherlands.Windisch, A., & Al Moubayed, N. (2009). Signal generation for search-based testing of continuous systems. In Proceedings of the 2nd international conference on software testing, verification, and validation workshops (pp. 121–130). Washington, DC: IEEE Computer Society.Windisch, A., Lindlar, F., Topuz, S., & Wappler, S. (2009). Evolutionary functional testing of continuous control systems. In GECCO ’09: Proceedings of the 11th annual conference on genetic and evolutionary computation (pp. 1943–1944). New York, NY: ACM.Windisch, A., Lindlar, F., Topuz, S., & Wappler, S. (2009). Evolutionary functional testing of continuous control systems. In Proceedings of the 11th annual conference on genetic and evolutionary computation (GECCO) (pp. 1943–1944). New York, NY: ACM
    corecore