439 research outputs found

    Character of electron reflection at a normal metal-Peierls semiconductor boundary

    Full text link
    The reflection of electrons incident from a normal metal on the boundary of the metal with a quasi-one-dimensional conductor containing a charge-density wave (CDW) is investigated theoretically. It is shown that the reflection is not of an Andreev character, as it was suggested earlier, but rather of a Bragg character. This is due to the fact that the CDW is actually an electronic crystal, and its wave vector is a reciprocal lattice vector of the electronic crystal. The ratio of the intensities of the standard and Bragg reflection depends on the phase of the CDW.Comment: 9 pages, no figures, revte

    Charge imbalance and Josephson effects in superconductor-normal metal mesoscopic structures

    Full text link
    We consider a SBSSBS Josephson junction the superconducting electrodes SS of which are in contact with normal metal reservoirs (BB means a barrier). For temperatures near TcT_{c} we calculate an effective critical current Ic% I_{c}^{\ast} and the resistance of the system at the currents I<I< Ic% I_{c}^{\ast} and I>>IcI>>I_{c}^{\ast}. It is found that the charge imbalance, which arises due to injection of quasiparticles from the NN reservoirs into the SS wire, affects essentially the characteristics of the structure. The effective critical current IcI_{c}^{\ast} is always larger than the critical current IcI_{c} in the absence of the normal reservoirs and increases with decreasing the ratio of the length of the SS wire 2L2L to the charge imbalance relaxation length lQl_{Q}. It is shown that a series of peaks arises on the IVI-V characteristics due to excitation of the Carlson-Goldman collective modes. We find the position of Shapiro steps which deviates from that given by the Josephson relation.Comment: 12 pages, 4 figures; accepted for publication in Phys. Rev.

    On Effect of Equilibrium Fluctuations on Superfluid Density in Layered Superconductors

    Full text link
    We calculate suppression of inter- and intralayer superconducting currents due to equilibrium phase fluctuations and find that, in contrast to a recent prediction, the effect of thermal fluctuations cannot account for linear temperature dependence of the superfluid density in high-Tc superconductors at low temperatures. Quantum fluctuations are found to dominate over thermal fluctuations at low temperatures due to hardening of their spectrum caused by the Josephson plasma resonance. Near Tc sizeable thermal fluctuations are found to suppress the critical current in the stack direction stronger, than in the direction along the layers. Fluctuations of quasiparticle branch imbalance make the spectral density of voltage fluctuations at small frequencies non zero, in contrast to what may be expected from a naive interpretation of Nyquist formula.Comment: 5 pages, LaTeX, RevTeX, Submitted to PR

    Intrinsic Josephson Effect and Violation of the Josephson Relation in Layered Superconductors

    Full text link
    Equations describing the resistive state of a layered superconductor with anisotropic pairing are derived. The similarity with a stack of Josephson junctions is found at small voltages only, when current density in the direction perpendicular to the layers can be interpreted as a sum of the Josephson superconducting, the Ohmic dissipative and the interference currents. In the spatially uniform state differential conductivity at higher voltages becomes negative. Nonuniformity of the current distribution generates the branch imbalance and violates the Josephson relation between frequency and voltage.Comment: 11 pages, no figures, revtex, to be published in Phys. Rev. Let

    High-frequency oscillations in low-dimensional conductors and semiconductor superlattices induced by current in stack direction

    Full text link
    A narrow energy band of the electronic spectrum in some direction in low-dimensional crystals may lead to a negative differential conductance and N-shaped I-V curve that results in an instability of the uniform stationary state. A well-known stable solution for such a system is a state with electric field domain. We have found a uniform stable solution in the region of negative differential conductance. This solution describes uniform high-frequency voltage oscillations. Frequency of the oscillation is determined by antenna properties of the system. The results are applicable also to semiconductor superlattices.Comment: 8 pages, 3 figure

    Linear response and collective oscillations in superconductors with d-wave pairing

    Full text link
    Simple and physically transparent equations for the linear response of layered superconductors with d-wave symmetry of the order parameter are derived by means of the quasiclassic kinetic theory of superconductivity. Responses to solenoidal and potential electric fields have different frequency dependencies. The conductivity describing the response to the solenoidal field is limited by the momentum relaxation, like in a normal metal. The response to the potential electric field depends, in addition, on the branch imbalance relaxation rate. The damping of plasma oscillations of superconducting electrons is determined by dielectric relaxation and is small. Relaxation of branch imbalance determined by elastic scattering is large enough to make the Carlson-Goldman mode in d-wave superconductors overdamped.Comment: 11 pages, latex, no figures, submitted to Physical Review

    Dynamics of Fluxon Lattice in Two Coupled Josephson Junctions

    Full text link
    We study theoretically the dynamics of a fluxon Lattice (FL) in two coupled Josephson junctions. We show that when the velocity of the moving FL exceeds certain values (Va,b)(V_{a,b}), sharp resonances arise in the system which are related to the excitation of the optical and acoustic collective modes. In the interval (Va,Vb)(V_a, V_b) a reconstruction of the FL occurs. We also establish that one can excite localized nonlinear distortions (dislocations) which may propagate through the FL and carry an arbitrary magnetic flux.Comment: 4 pages, 3 figures, corected typo

    Another deep dimming of the classical T Tauri star RW Aur A

    Full text link
    Context. RW Aur A is a classical T Tauri star (CTTS) with an unusually rich emission line spectrum. In 2014 the star faded by ~ 3 magnitudes in the V band and went into a long-lasting minimum. In 2010 the star suffered from a similar fading, although less deep. These events in RW Aur A are very unusual among the CTTS, and have been attributed to occultations by passing dust clouds. Aims. We want to find out if any spectral changes took place after the last fading of RW Aur A with the intention to gather more information on the occulting body and the cause of the phenomenon. Methods. We collected spectra of the two components of RW Aur. Photometry was made before and during the minimum. Results. The overall spectral signatures reflecting emission from accretion flows from disk to star did not change after the fading. However, blue-shifted absorption components related to the stellar wind had increased in strength in certain resonance lines, and the profiles and strengths, but not fluxes, of forbidden lines had become drastically different. Conclusions. The extinction through the obscuring cloud is grey indicating the presence of large dust grains. At the same time, there are no traces of related absorbing gas. The cloud occults the star and the interior part of the stellar wind, but not the wind/jet further out. The dimming in 2014 was not accompanied by changes in the accretion flows at the stellar surface. There is evidence that the structure and velocity pattern of the stellar wind did change significantly. The dimmings could be related to passing condensations in a tidally disrupted disk, as proposed earlier, but we also speculate that large dust grains have been stirred up from the inclined disk into the line-of-sight through the interaction with an enhanced wind.Comment: 5 pages, 5 figures, Accepted for publication in A&
    corecore