2 research outputs found

    Synthesis, Structure, and Magnetic Properties of 1D {[Mn<sup>III</sup>(CN)<sub>6</sub>][Mn<sup>II</sup>(dapsc)]}<sub><i>n</i></sub> Coordination Polymers: Origin of Unconventional Single-Chain Magnet Behavior

    No full text
    Two one-dimensional cyano-bridged coordination polymers, namely, {[Mn<sup>II</sup>(dapsc)]­[Mn<sup>III</sup>(CN)<sub>6</sub>]­[K­(H<sub>2</sub>O)<sub>2.75</sub>(MeOH)<sub>0.5</sub>]}<sub><i>n</i></sub>·0.5<i>n</i>(H<sub>2</sub>O) (<b>I</b>) and {[Mn<sup>II</sup>(dapsc)]­[Mn<sup>III</sup>(CN)<sub>6</sub>]­[K­(H<sub>2</sub>O)<sub>2</sub>(MeOH)<sub>2</sub>]}<sub><i>n</i></sub> (<b>II</b>), based on alternating high-spin Mn<sup>II</sup>(dapsc) (dapsc = 2,6-diacetylpyridine bis­(semicarbazone)) complexes and low-spin orbitally degenerate hexacyanomanganate­(III) complexes were synthesized and characterized structurally and magnetically. Static and dynamic magnetic measurements reveal a single-chain magnet (SCM) behavior of <b>I</b> with an energy barrier of <i>U</i><sub>eff</sub> ≈ 40 K. Magnetic properties of <b>I</b> are analyzed in detail in terms of a microscopic theory. It is shown that compound <b>I</b> refers to a peculiar case of SCM that does not fall into the usual Ising and Heisenberg limits due to unconventional character of the Mn<sup>III</sup>–CN–Mn<sup>II</sup> spin coupling resulting from a nonmagnetic singlet ground state of orbitally degenerate complexes [Mn<sup>III</sup>(CN)<sub>6</sub>]<sup>3–</sup>. The prospects of [Mn<sup>III</sup>(CN)<sub>6</sub>]<sup>3–</sup> complex as magnetically anisotropic molecular building block for engineering molecular magnets are critically analyzed

    Single-Ion Magnet Et<sub>4</sub>N[Co<sup>II</sup>(hfac)<sub>3</sub>] with Nonuniaxial Anisotropy: Synthesis, Experimental Characterization, and Theoretical Modeling

    No full text
    In this article we report the synthesis and structure of the new Co­(II) complex Et<sub>4</sub>N­[Co<sup>II</sup>­(hfac)<sub>3</sub>] (<b>I</b>) (hfac = hexafluoroacetylacetonate) exhibiting single-ion magnet (SIM) behavior. The performed analysis of the magnetic characteristics based on the complementary experimental techniques such as static and dynamic magnetic measurements, electron paramagnetic resonance spectroscopy in conjunction with the theoretical modeling (parametric Hamiltonian and ab initio calculations) demonstrates that the SIM properties of <b>I</b> arise from the nonuniaxial magnetic anisotropy with strong positive axial and significant rhombic contributions
    corecore