35 research outputs found

    Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis

    Get PDF
    Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea–induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea–induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction

    Silencing of Vlaro2 for chorismate synthase revealed that the phytopathogen Verticillium longisporum induces the cross-pathway control in the xylem

    Get PDF
    The first leaky auxotrophic mutant for aromatic amino acids of the near-diploid fungal plant pathogen Verticillium longisporum (VL) has been generated. VL enters its host Brassica napus through the roots and colonizes the xylem vessels. The xylem contains little nutrients including low concentrations of amino acids. We isolated the gene Vlaro2 encoding chorismate synthase by complementation of the corresponding yeast mutant strain. Chorismate synthase produces the first branch point intermediate of aromatic amino acid biosynthesis. A novel RNA-mediated gene silencing method reduced gene expression of both isogenes by 80% and resulted in a bradytrophic mutant, which is a leaky auxotroph due to impaired expression of chorismate synthase. In contrast to the wild type, silencing resulted in increased expression of the cross-pathway regulatory gene VlcpcA (similar to cpcA/GCN4) during saprotrophic life. The mutant fungus is still able to infect the host plant B. napus and the model Arabidopsis thaliana with reduced efficiency. VlcpcA expression is increased in planta in the mutant and the wild-type fungus. We assume that xylem colonization requires induction of the cross-pathway control, presumably because the fungus has to overcome imbalanced amino acid supply in the xylem

    Revisiting the Myths of Protein Interior: Studying Proteins with Mass-Fractal Hydrophobicity-Fractal and Polarizability-Fractal Dimensions

    Get PDF
    A robust marker to describe mass, hydrophobicity and polarizability distribution holds the key to deciphering structural and folding constraints within proteins. Since each of these distributions is inhomogeneous in nature, the construct should be sensitive in describing the patterns therein. We show, for the first time, that the hydrophobicity and polarizability distributions in protein interior follow fractal scaling. It is found that (barring ‘all-α’) all the major structural classes of proteins have an amount of unused hydrophobicity left in them. This amount of untapped hydrophobicity is observed to be greater in thermophilic proteins, than that in their (structurally aligned) mesophilic counterparts. ‘All-β’(thermophilic, mesophilic alike) proteins are found to have maximum amount of unused hydrophobicity, while ‘all-α’ proteins have been found to have minimum polarizability. A non-trivial dependency is observed between dielectric constant and hydrophobicity distributions within (α+β) and ‘all-α’ proteins, whereas absolutely no dependency is found between them in the ‘all-β’ class. This study proves that proteins are not as optimally packed as they are supposed to be. It is also proved that origin of α-helices are possibly not hydrophobic but electrostatic; whereas β-sheets are predominantly hydrophobic in nature. Significance of this study lies in protein engineering studies; because it quantifies the extent of packing that ensures protein functionality. It shows that myths regarding protein interior organization might obfuscate our knowledge of actual reality. However, if the later is studied with a robust marker of strong mathematical basis, unknown correlations can still be unearthed; which help us to understand the nature of hydrophobicity, causality behind protein folding, and the importance of anisotropic electrostatics in stabilizing a highly complex structure named ‘proteins’

    Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata)

    No full text
    Protein kinases are important in eukaryotic signal transduction pathways. In this study we designed degenerate oligonucleotides corresponding to two conserved regions of protein kinases and using the polymerase chain reaction (PCR) have amplified a 141 bp fragment of DNA from mungbeans (Vigna radiata Rwilcz cv. Berken). Sequence analysis of the PCR products indicates that they encode several putative protein kinases with respect to their identity with other known plant protein kinases. Using one of the six fragments (CPK3-8), we isolated a 2022 bp cDNA (VrCDPK-1) from a Vigna radiata lambda gt11 library. Vr CDPK-1 has a 96 bp 5'-untranslated region and a 465 bp 3'-untranslated region and an open reading frame of 1461 bp. VrCDPK-1 contains all of the conserved regions commonly found in calcium dependent protein kinases (CDPK). VrCDPK-1 shares 24 to 89% sequence identity with previously reported sequences for plant CDPKs at the protein level. Southern analysis revealed the presence of several copies of the CDPK gene. VrCDPK-1 expression was stimulated when mungbean cuttings were treated with CaCl2, while treatment with MgCl2 had no effect. We are reporting for the first time a CDPK gene in mungbean which is inducible by mechanical strain. Cuttings treated with indole-3-acetic acid (IAA) or subjected to salt stress showed an increase in VrCDPK-1 expression. There was a dramatic stimulation in VrCDPK-1 expression 6 h after cuttings were treated with cycloheximide

    Identification of two new members of the l-aminocyclopropane-l-carboxylate synthase-encoding multigene family in mung bean

    No full text
    The key enzyme regulating ethylene biosynthesis in higher plants is l-aminocyclopropane-l-carboxylate (ACC) synthase. In mung bean (MB), the existence of three genes encoding this enzyme has previously been reported [Botella et al., Plant Mol. Biol. 18 (1992) 793-797], one of which corresponds to a full-length indole-3-acetic acid-inducible cDNA [Botella et al., Plant Mol. Biol. (1992) 425-436], In this paper we report the cloning of two new genomic sequences coding for ACC synthase in MB (MAC-4 and MAC-5). MAC-4 is 1340 bp long and encodes 388 amino acids (aa) while MAC-5 is 1393 bp long and encodes for 391 aa. Genomic Southern analysis suggests the existence of only one copy of each gene in the genome
    corecore