3 research outputs found

    Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform

    Full text link
    © 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibitedWe present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during super- continuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.F. R. A. S. thanks the Consejo Nacional de Ciencia y Tecnologia (CONACyT). F. R. A. S. and M. T. C. acknowledge partial funding provided by the projects CONCyTEG (GTO-2012-C03-195247) and DAIP-UG 382/2014. I. T. G. acknowledges CONACyT for partial support, project: 106764 (CB-2008-1). The work of A. F. was supported by the MINECO under Grant No. TEC2010-15327. C. M. thanks Dr. Miguel Arevalillo Herraez for details on GAs. F. R. A. S thanks Dr. Daniel Ceballos for providing the numerical data for the fiber dispersion.Arteaga Sierra, FR.; Milián Enrique, C.; Torres-Gómez, I.; Torres-Cisneros, M.; Moltó, G.; Ferrando Cogollos, A. (2014). Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform. Optics Express. 22(19):23686-23693. https://doi.org/10.1364/OE.22.023686S23686236932219Gordon, J. P. (1986). Theory of the soliton self-frequency shift. Optics Letters, 11(10), 662. doi:10.1364/ol.11.000662Mitschke, F. M., & Mollenauer, L. F. (1986). Discovery of the soliton self-frequency shift. Optics Letters, 11(10), 659. doi:10.1364/ol.11.000659Dudley, J. M., Genty, G., & Coen, S. (2006). Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78(4), 1135-1184. doi:10.1103/revmodphys.78.1135Skryabin, D. V., & Gorbach, A. V. (2010). Colloquium: Looking at a soliton through the prism of optical supercontinuum. Reviews of Modern Physics, 82(2), 1287-1299. doi:10.1103/revmodphys.82.1287Gorbach, A. V., & Skryabin, D. V. (2007). Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres. Nature Photonics, 1(11), 653-657. doi:10.1038/nphoton.2007.202Hause, A., Tran, T. X., Biancalana, F., Podlipensky, A., Russell, P. S. J., & Mitschke, F. (2010). Understanding Raman-shifting multipeak states in photonic crystal fibers: two convergent approaches. Optics Letters, 35(13), 2167. doi:10.1364/ol.35.002167Hause, A., & Mitschke, F. (2010). Soliton trains in motion. Physical Review A, 82(4). doi:10.1103/physreva.82.043838Tran, T. X., Podlipensky, A., Russell, P. S. J., & Biancalana, F. (2010). Theory of Raman multipeak states in solid-core photonic crystal fibers. Journal of the Optical Society of America B, 27(9), 1785. doi:10.1364/josab.27.001785Gorbach, A. V., & Skryabin, D. V. (2008). Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers. Optics Express, 16(7), 4858. doi:10.1364/oe.16.004858Milián, C., Skryabin, D. V., & Ferrando, A. (2009). Continuum generation by dark solitons. Optics Letters, 34(14), 2096. doi:10.1364/ol.34.002096Milián, C., Ferrando, A., & Skryabin, D. V. (2012). Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers. Journal of the Optical Society of America B, 29(4), 589. doi:10.1364/josab.29.000589Arteaga-Sierra, F. R., Milián, C., Torres-Gómez, I., Torres-Cisneros, M., Ferrando, A., & Dávila, A. (2014). Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber. Optics Express, 22(3), 2451. doi:10.1364/oe.22.002451Dekker, S. A., Judge, A. C., Pant, R., Gris-Sánchez, I., Knight, J. C., de Sterke, C. M., & Eggleton, B. J. (2011). Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss. Optics Express, 19(18), 17766. doi:10.1364/oe.19.017766Rothhardt, J., Heidt, A. M., Hädrich, S., Demmler, S., Limpert, J., & Tünnermann, A. (2012). High stability soliton frequency-shifting mechanisms for laser synchronization applications. Journal of the Optical Society of America B, 29(6), 1257. doi:10.1364/josab.29.001257Al-kadry Alaa M., & Rochette, M. (2012). Mid-infrared sources based on the soliton self-frequency shift. Journal of the Optical Society of America B, 29(6), 1347. doi:10.1364/josab.29.001347Judge, A. C., Bang, O., Eggleton, B. J., Kuhlmey, B. T., Mägi, E. C., Pant, R., & de Sterke, C. M. (2009). Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber. Journal of the Optical Society of America B, 26(11), 2064. doi:10.1364/josab.26.002064Pricking, S., & Giessen, H. (2010). Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers. Optics Express, 18(19), 20151. doi:10.1364/oe.18.020151Pant, R., Judge, A. C., Magi, E. C., Kuhlmey, B. T., de Sterke, M., & Eggleton, B. J. (2010). Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift. Journal of the Optical Society of America B, 27(9), 1894. doi:10.1364/josab.27.001894Ferrando, A., Milián, C., González, N., Moltó, G., Loza, P., Arevalillo-Herráez, M., … Hernández, V. (2010). Designing supercontinuum spectra using Grid technology. 2nd Workshop on Specialty Optical Fibers and Their Applications (WSOF-2). doi:10.1117/12.867203Akhmediev, N., & Karlsson, M. (1995). Cherenkov radiation emitted by solitons in optical fibers. Physical Review A, 51(3), 2602-2607. doi:10.1103/physreva.51.2602Wang, J., Geng, Y.-J., Guo, B., Klima, T., Lal, B. N., Willerson, J. T., & Casscells, W. (2002). Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. Journal of the American College of Cardiology, 39(8), 1305-1313. doi:10.1016/s0735-1097(02)01767-9Wang, Y., Nelson, J., Chen, Z., Reiser, B., Chuck, R., & Windeler, R. (2003). Optimal wavelength for ultrahigh-resolution optical coherence tomography. Optics Express, 11(12), 1411. doi:10.1364/oe.11.001411Humbert, G., Wadsworth, W., Leon-Saval, S., Knight, J., Birks, T., St. J. Russell, P., … Stifter, D. (2006). Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Optics Express, 14(4), 1596. doi:10.1364/oe.14.001596Wang, Y., Zhao, Y., Nelson, J. S., Chen, Z., & Windeler, R. S. (2003). Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Optics Letters, 28(3), 182. doi:10.1364/ol.28.000182Spöler, F., Kray, S., Grychtol, P., Hermes, B., Bornemann, J., Först, M., & Kurz, H. (2007). Simultaneous dual-band ultra-high resolution optical coherence tomography. Optics Express, 15(17), 10832. doi:10.1364/oe.15.010832Smith, A. M., Mancini, M. C., & Nie, S. (2009). Second window for in vivo imaging. Nature Nanotechnology, 4(11), 710-711. doi:10.1038/nnano.2009.326Huntley, J. M., Widjanarko, T., & Ruiz, P. D. (2010). Hyperspectral interferometry for single-shot absolute measurement of two-dimensional optical path distributions. Measurement Science and Technology, 21(7), 075304. doi:10.1088/0957-0233/21/7/075304Cao, Q., Zhegalova, N. G., Wang, S. T., Akers, W. J., & Berezin, M. Y. (2013). Multispectral imaging in the extended near-infrared window based on endogenous chromophores. Journal of Biomedical Optics, 18(10), 101318. doi:10.1117/1.jbo.18.10.101318Kodama, Y., & Hasegawa, A. (1987). Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics, 23(5), 510-524. doi:10.1109/jqe.1987.1073392Driben, R., Malomed, B. A., Yulin, A. V., & Skryabin, D. V. (2013). Newton’s cradles in optics: FromN-soliton fission to soliton chains. Physical Review A, 87(6). doi:10.1103/physreva.87.063808Feldchtein, F. I., Gelikonov, G. V., Gelikonov, V. M., Iksanov, R. R., Kuranov, R. V., Sergeev, A. M., … Reitze, D. H. (1998). In vivo OCT imaging of hard and soft tissue of the oral cavity. Optics Express, 3(6), 239. doi:10.1364/oe.3.000239Gelikonov, V. M., Gelikonov, G. V., & Feldchtein, F. I. (2004). Two-wavelength optical coherence tomography. Radiophysics and Quantum Electronics, 47(10-11), 848-859. doi:10.1007/s11141-005-0024-7Fujimoto, J. G., Pitris, C., Boppart, S. A., & Brezinski, M. E. (2000). Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy. Neoplasia, 2(1-2), 9-25. doi:10.1038/sj.neo.7900071Fujimoto, J. G. (2003). Optical coherence tomography for ultrahigh resolution in vivo imaging. Nature Biotechnology, 21(11), 1361-1367. doi:10.1038/nbt892Kerrinckx, E., Bigot, L., Douay, M., & Quiquempois, Y. (2004). Photonic crystal fiber design by means of a genetic algorithm. Optics Express, 12(9), 1990. doi:10.1364/opex.12.001990Zhang, W. Q., Sharping, J. E., White, R. T., Monro, T. M., & Afshar V., S. (2010). Design and optimization of fiber optical parametric oscillators for femtosecond pulse generation. Optics Express, 18(16), 17294. doi:10.1364/oe.18.017294Zhang, W. Q., Afshar V., S., & Monro, T. M. (2009). A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation. Optics Express, 17(21), 19311. doi:10.1364/oe.17.019311Musin, R. R., & Zheltikov, A. M. (2008). Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm. Optics Communications, 281(4), 567-572. doi:10.1016/j.optcom.2007.09.035Yin, G.-B., Li, S.-G., Liu, S., & Wang, X.-Y. (2011). The Optimization of Dispersion Properties of Photonic Crystal Fibers Using a Real-Coded Genetic Algorithm. Chinese Physics Letters, 28(6), 064215. doi:10.1088/0256-307x/28/6/064215Afshar V., S., & Monro, T. M. (2009). A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. Optics Express, 17(4), 2298. doi:10.1364/oe.17.002298Stolen, R. H., Tomlinson, W. J., Haus, H. A., & Gordon, J. P. (1989). Raman response function of silica-core fibers. Journal of the Optical Society of America B, 6(6), 1159. doi:10.1364/josab.6.001159Bashkatov, A. N., Genina, E. A., Kochubey, V. I., & Tuchin, V. V. (2005). Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 38(15), 2543-2555. doi:10.1088/0022-3727/38/15/004Tripathi, R., Nassif, N., Nelson, J. S., Park, B. H., & de Boer, J. F. (2002). Spectral shaping for non-Gaussian source spectra in optical coherence tomography. Optics Letters, 27(6), 406. doi:10.1364/ol.27.00040

    Dissipative solitons in photonic molecules

    Get PDF
    Many physical systems display quantized energy states. In optics, interacting resonant cavities show a transmission spectrum with split eigenfrequencies, similar to the split energy levels that result from interacting states in bonded multi-atomic—that is, molecular—systems. Here, we study the nonlinear dynamics of photonic diatomic molecules in linearly coupled microresonators and demonstrate that the system supports the formation of self-enforcing solitary waves when a laser is tuned across a split energy level. The output corresponds to a frequency comb (microcomb) whose characteristics in terms of power spectral distribution are unattainable in single-mode (atomic) systems. Photonic molecule microcombs are coherent, reproducible and reach high conversion efficiency and spectral flatness while operated with a laser power of a few milliwatts. These properties can favour the heterogeneous integration of microcombs with semiconductor laser technology and facilitate applications in optical communications, spectroscopy and astronomy

    XIV Seminario Internacional de Investigación en Urbanismo. ACTAS

    Full text link
    La presente publicación recoge los resúmenes de todas las ponencias presentadas oralmente en la decimocuarta edición del Seminario Internacional de Investigación en Urbanismo (SIIU), celebrada en la Escuela Técnica Superior de Arquitectura de Madrid (Universidad Politécnica de Madrid) y presentadas durante los días 16 y 17 de junio de 2022. El Seminario Internacional de Investigación en Urbanismo tuvo su origen en el año 2007, como iniciativa de un grupo de profesores y doctorandos del Departamento de Urbanismo y Ordenación del Territorio de la Universidad Politécnica de Catalunya. Este seminario, originalmente interno y dirigido a investigadores en formación, pretendía ser un espacio de encuentro anual de los doctorandos del programa para debatir y recibir feedback sobre sus trabajos. Su condición pionera, como espacio de reflexión en torno a temas sobre la ciudad, el territorio y el paisaje en el ámbito hispanoamericano, provocó que muy pronto excediera el ámbito local y se transformara en un espacio de interés internacional. Por esta razón, a partir de la quinta edición, celebrada en 2013, se realiza cada año de manera conjunta entre la sede de Barcelona (Universidad Politécnica de Cataluña) y una sede latinoamericana. Hasta ahora han sido sede del SIIU en América, al otro lado del Atlántico: Buenos Aires, Córdoba (Argentina), Santiago de Chile, Bogotá, São Paulo, Camboriú y Curitiba. Asimismo, a partir del año 2020, el gran interés que estaba generando de este lado del Atlántico impulsa su realización en universidades de la Península Ibérica en conjunto con la UPC. De esta manera, Lisboa fue ese año la sede que, en colaboración con Barcelona, acogió el seminario, con el fin de responder al gran interés que éste tiene en el ámbito lusitano. Y en junio de 2022, Madrid ha sido la sede del seminario en España, con la voluntad de estrechar lazos entre dos de las escuelas de arquitectura más importantes del país, y compartir experiencias y miradas sobre los temas relacionados con el urbanismo. Del otro lado del Atlántico, Curitiba fue la sede latinoamericana que, con gran éxito, celebró la segunda parte del evento en la semana siguiente al evento de Madrid
    corecore