537 research outputs found

    Characterisation of the Trichinella spiralis deubiquitinating enzyme, TsUCH37, an evolutionarily conserved proteasome interaction partner.

    Get PDF
    Trichinella spiralis is a parasitic nematode that infects mammals indiscriminately. Although the biggest impact of trichinellosis is observed in developing countries, the parasite is found on all continents except Antarctica. In humans, Trichinella infection contributes globally to helminth related morbidity and disability adjusted life years. In animals, infection is implicated as a serious agricultural problem and drug treatment is largely ineffective. During chronic infection, larvae invade skeletal muscle cells, forming a nurse cell complex in which they become encysted. The nurse cell is a product of the severe disruption of the host cell homeostasis. Proteins of the Ub/proteasome pathway are highly conserved throughout evolution, and considering their importance in the regulation of cell homeostasis, provide interesting and novel therapeutic targets for various diseases. In order to target this system in parasites, pathogen proteins that play a role in this pathway must be identified. We report the identification of the first T. spiralis deubiquitinating enzyme, and show evidence that the function of this protein as a proteasome interaction partner has been evolutionarily conserved. We show that members of this enzyme family are important for T. spiralis survival and that the use of inhibitor compounds may help elucidate their role in infection

    Limited response of NK92 cells to Plasmodium falciparum-infected erythrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanisms by which anti-malarial immune responses occur are still not fully clear. Natural killer (NK) cells are thought to play a pivotal role in innate responses against <it>Plasmodium falciparum</it>. In this study, the suitability of NK92 cells as models for the NK mechanisms involved in the immune response against malaria was investigated.</p> <p>Methods</p> <p>NK92 cells were assessed for several signs of activation and cytotoxicity due to contact to parasites and were as well examined by oligonucleotide microarrays for an insight on the impact <it>P. falciparum</it>-infected erythrocytes have on their transcriptome. To address the parasite side of such interaction, growth inhibition assays were performed including non-NK cells as controls.</p> <p>Results</p> <p>By performing microarrays with NK92 cells, the impact of parasites on a transcriptional level was observed. The findings show that, although not evidently activated by iRBCs, NK92 cells show transcriptional signs of priming and proliferation. In addition, decreased parasitaemia was observed due to co-incubation with NK92 cells. However, such effect might not be NK-specific since irrelevant cells also affected parasite growth <it>in vitro</it>.</p> <p>Conclusions</p> <p>Although NK92 cells are here shown to behave as poor models for the NK immune response against parasites, the results obtained in this study may be of use for future investigations regarding host-parasites interactions in malaria.</p

    Notch Lineages and Activity in Intestinal Stem Cells Determined by a New Set of Knock-In Mice

    Get PDF
    The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFPSAT, demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues

    Molecular Structure and Dimeric Organization of the Notch Extracellular Domain as Revealed by Electron Microscopy

    Get PDF
    Background: The Notch receptor links cell fate decisions of one cell to that of the immediate cellular neighbor. In humans, malfunction of Notch signaling results in diseases and congenital disorders. Structural information is essential for gaining insight into the mechanism of the receptor as well as for potentially interfering with its function for therapeutic purposes. Methodology/Principal Findings: We used the Affinity Grid approach to prepare specimens of the Notch extracellular domain (NECD) of the Drosophila Notch and human Notch1 receptors suitable for analysis by electron microscopy and three-dimensional (3D) image reconstruction. The resulting 3D density maps reveal that the NECD structure is conserved across species. We show that the NECD forms a dimer and adopts different yet defined conformations, and we identify the membrane-proximal region of the receptor and its ligand-binding site. Conclusions/Significance: Our results provide direct and unambiguous evidence that the NECD forms a dimer. Our studies further show that the NECD adopts at least three distinct conformations that are likely related to different functional states of the receptor. These findings open the way to now correlate mutations in the NECD with its oligomeric state and conformation

    Immunolocalization of notch signaling protein molecules in a maxillary chondrosarcoma and its recurrent tumor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Notch receptors are critical determinants of cell fate in a variety of organisms. Notch signaling is involved in the chondrogenic specification of neural crest cells. Aberrant Notch activity has been implicated in numerous human diseases including cancers; however its role in chondrogenic tumors has not been clarified.</p> <p>Method</p> <p>Tissue samples from a case of primary chondrosarcoma of the maxilla and its recurrent tumor were examined immunohistochemically for Notch1-4 and their ligands (Jagged1, Jagged2 and Delta1) expression.</p> <p>Results</p> <p>Both primary and recurrent tumors were histopathologically diagnosed as conventional hyaline chondrosarcoma (WHO Grade I). Hypercellular tumor areas strongly expressed Notch3 and Jagged1 in spindle and pleomorphic cells suggesting up-regulation of these protein molecules at sites of tumor proliferation. Expression patterns were distinct with some overlap. Differentiated malignant and atypical chondrocytes demonstrated variable expression levels of Jagged1, and weak to absent staining for Notch1, 4 and Delta1. Protein immunolocalization was largely membranous and cytoplasmic, sometimes outlining the lacunae of malignant chondrocytes. Hyaline cartilage demonstrated a diffuse or granular precipitation of Jagged1 suggesting presence of soluble Jagged1 activity at sites of abnormal chondrogenesis. No immunoreactivity for the other Notch members was observed. Calcified cartilage was consistently Notch-negative indicating down-regulation of Notch with cartilage maturation. Stromal components namely endothelial cells and fibroblasts variably expressed Notch1, 3 and Jagged1 but were mildly or non-reactive for the other members.</p> <p>Conclusions</p> <p>Results indicate that Notch signaling pathway may participate in cellular differentiation and proliferation in chondrosarcoma. Findings implicate Notch3 and Jagged1 as key molecules that influence the differentiation and maturation of cells of chondrogenic lineage.</p

    In Vivo Analysis of the Notch Receptor S1 Cleavage

    Get PDF
    A ligand-independent cleavage (S1) in the extracellular domain of the mammalian Notch receptor results in what is considered to be the canonical heterodimeric form of Notch on the cell surface. The in vivo consequences and significance of this cleavage on Drosophila Notch signaling remain unclear and contradictory. We determined the cleavage site in Drosophila and examined its in vivo function by a transgenic analysis of receptors that cannot be cleaved. Our results demonstrate a correlation between loss of cleavage and loss of in vivo function of the Notch receptor, supporting the notion that S1 cleavage is an in vivo mechanism of Notch signal control

    Plasmodium falciparum-Infected Erythrocytes Induce Granzyme B by NK Cells through Expression of Host-Hsp70

    Get PDF
    In the early immune response to Plasmodium falciparum-infected erythrocytes (iRBC), Natural Killer (NK) cells are activated, which suggests an important role in innate anti-parasitic immunity. However, it is not well understood whether NK cells directly recognize iRBC or whether stimulation of NK cells depends mainly on activating signals from accessory cells through cell-to-cell contact or soluble factors. In the present study, we investigated the influence of membrane-bound host Heat shock protein (Hsp) 70 in triggering cytotoxicity of NK cells from malaria-naïve donors or the cell line NK92 against iRBC. Hsp70 and HLA-E membrane expression on iRBC and potential activatory NK cell receptors (NKG2C, CD94) were assessed by flow cytometry and immunoblot. Upon contact with iRBC, Granzyme B (GzmB) production and release was initiated by unstimulated and Hsp70-peptide (TKD) pre-stimulated NK cells, as determined by Western blot, RT-PCR and ELISPOT analysis. Eryptosis of iRBC was determined by Annexin V-staining. Our results suggest that presence of Hsp70 and absence of HLA-E on the membrane of iRBC prompt the infected host cells to become targets for NK cell-mediated cytotoxicity, as evidenced by impaired parasite development. Contact of iRBC with NK cells induced release of GzmB. We propose that following GzmB uptake, iRBC undergo eryptosis via a perforin-independent, GzmB-mediated mechanism. Since NK activity toward iRBC could be specifically enhanced by TKD peptide and abrogated to baseline levels by blocking Hsp70 exposure, we propose TKD as an innovative immunostimulatory agent to be tested as an adjunct to anti-parasitic treatments in vivo

    Uif, a Large Transmembrane Protein with EGF-Like Repeats, Can Antagonize Notch Signaling in Drosophila

    Get PDF
    <div><h3>Background</h3><p>Notch signaling is a highly conserved pathway in multi-cellular organisms ranging from flies to humans. It controls a variety of developmental processes by stimulating the expression of its target genes in a highly specific manner both spatially and temporally. The diversity, specificity and sensitivity of the Notch signaling output are regulated at distinct levels, particularly at the level of ligand-receptor interactions.</p> <h3>Methodology/Principal Findings</h3><p>Here, we report that the <em>Drosophila</em> gene <em>uninflatable</em> (<em>uif</em>), which encodes a large transmembrane protein with eighteen EGF-like repeats in its extracellular domain, can antagonize the canonical Notch signaling pathway. Overexpression of Uif or ectopic expression of a neomorphic form of Uif, Uif*, causes Notch signaling defects in both the wing and the sensory organ precursors. Further experiments suggest that ectopic expression of Uif* inhibits Notch signaling <em>in cis</em> and acts at a step that is dependent on the extracellular domain of Notch. Our results suggest that Uif can alter the accessibility of the Notch extracellular domain to its ligands during Notch activation.</p> <h3>Conclusions/Significance</h3><p>Our study shows that Uif can modulate Notch activity, illustrating the importance of a delicate regulation of this signaling pathway for normal patterning.</p> </div
    corecore