106 research outputs found

    Potential energy curves and electronic structure of 3d transition metal hydrides and their cations

    Get PDF
    We investigate gas-phase neutral and cationic hydrides formed by 3d transition metals from Sc to Cu with density functional theory (DFT) methods. The performance of two exchange-correlation functionals, Boese-Martin for kinetics (BMK) and Tao-Perdew-Staroverov-Scuseria (TPSS), in predicting bond lengths and energetics, electronic structures, dipole moments, and ionization potentials is evaluated in comparison with available experimental data. To ensure a unique self-consistent field (SCF) solution, we use stability analysis, Fermi smearing, and continuity analysis of the potential energy curves. Broken-symmetry approach was adapted in order to get the qualitatively correct description of the bond dissociation. We found that on average BMK predicted values of dissociation energies and ionization potentials are closer to experiment than those obtained with high level wave function theory methods. This agreement deteriorates quickly when the fraction of the Hartree-Fock exchange in DFT functional is decreased. Natural bond orbital (NBO) population analysis was used to describe the details of chemical bonding in the systems studied. The multireference character in the wave function description of the hydrides is reproduced in broken-symmetry DFT description, as evidenced by NBO analysis. We also propose a new scheme to correct for spin contamination arising in broken-symmetry DFT approach. Unlike conventional schemes, our spin correction is introduced for each spin-polarized electron pair individually and therefore is expected to yield more accurate energy values. We derive an expression to extract the energy of the pure singlet state from the energy of the broken-symmetry DFT description of the low spin state and the energies of the high spin states (pentuplet and two spin-contaminated triplets in the case of two spin-polarized electron pairs). The high spin states are build with canonical natural orbitals and do not require SCF convergence

    Supramolecular step in design of nonlinear optical materials: Effect of pi ... pi stacking aggregation on hyperpolarizability

    Get PDF
    Theoretical estimation of nonlinear optical (NLO) properties is an important step in systematic search for optoelectronic materials. Density functional theory methods are often used to predict first molecular hyperpolarizability for compounds in advance of their synthesis. However, design of molecular NLO materials require an estimation of the bulk properties, which are often approximated as additive superposition of molecular tensors. It is therefore important to evaluate the accuracy of this additive approximation and estimate the extent by which intermolecular interactions influence the first molecular hyperpolarizability beta. Here we focused on the stacking aggregates, including up to 12 model molecules (pNA and ANS) and observed enhancement and suppression of molecular hyperpolarizability relative to the additive sum. We found that degree of nonadditivity depends on relative orientation of the molecular dipole moments and does not correlate with intermolecular interaction energy. Frenkel exciton model, based on dipole-dipole approximation can be used for qualitative prediction of intermolecular effects. We report on inaccuracy of this model for the molecules with long pi-systems that are significantly shifted relative to each other, when dipole-dipole approximation becomes inaccurate. To obtain more detailed information on the effect of intermolecular interactions on beta we proposed electrostatic approach which accounts for the mutual polarization of the molecules by each other. We measure the induced polarization of each molecule in the aggregate by the charge of its donor (or acceptor) group. The proposed approach demonstrates linear correlation beta(FF) vs beta(elm) (estimated by finite field theory and electrostatic model, respectively) and allows decomposition of the hyperpolarizability for a molecular aggregate into separate molecular contributions. We used this decomposition to analyze the reasons of deviation of aggregate beta from additivity, as well as the cooperative effect of intermolecular interactions on hyperpolarizability for stacks of growing size. In cases of positive cooperativity (enhancement), we found 6-8 molecules to be necessary to reach the asymptotic limit. In more frequent cases of negative cooperativity two opposite factors play role. The first one consists of direct lowering of beta due to repulsive dipole-dipole interactions. The second factor is originated in a decrease of molecular dipole moments, which in turn leads to a decrease of dipole-dipole repulsion, and therefore increases beta. For strong intermolecular repulsive dipole-dipole interactions these effects nearly cancel each other. In such cases the trimers and even dimers are sufficient to reach the asymptotic limit of the infinite stacks. Based on the observed trends we estimated non-additive correction to beta for well known NLO crystals NPAN and MNMA. In the case of NPAN, stacking effect on molecular hyperpolarizability represents the leading component of the crystal packing effect and improves the agreement between calculated and experimental data which is further improved when frequency dependence is taken in account

    Double excitations and state-to-state transition dipoles in pi-pi* excited singlet states of linear polyenes: Time-dependent density-functional theory versus multiconfigurational methods

    Get PDF
    The effect of static and dynamic electron correlation on the nature of excited states and state-to-state transition dipole moments is studied with a multideterminant wave function approach on the example of all-trans linear polyenes (C4H6, C6H8, and C8H10). Symmetry-forbidden singlet nA(g) states were found to separate into three groups: purely single, mostly single, and mostly double excitations. The excited-state absorption spectrum is dominated by two bright transitions: 1B(u)-2A(g) and 1B(u)-mA(g), where mA(g) is the state, corresponding to two-electron excitation from the highest occupied to lowest unoccupied molecular orbital. The richness of the excited-state absorption spectra and strong mixing of the doubly excited determinants into lower-nA(g) states, reported previously at the complete active space self-consistent field level of theory, were found to be an artifact of the smaller active space, limited to pi orbitals. When dynamic sigma-pi correlation is taken into account, single- and double-excited states become relatively well separated at least at the equilibrium geometry of the ground state. This electronic structure is closely reproduced within time-dependent density-functional theory (TD DFT), where double excitations appear in a second-order coupled electronic oscillator formalism and do not mix with the single excitations obtained within the linear response. An extension of TD DFT is proposed, where the Tamm-Dancoff approximation (TDA) is invoked after the linear response equations are solved (a posteriori TDA). The numerical performance of this extension is validated against multideterminant-wave-function and quadratic-response TD DFT results. It is recommended for use with a sum-over-states approach to predict the nonlinear optical properties of conjugated molecules

    Applicability of hybrid density functional theory methods to calculation of molecular hyperpolarizability

    Get PDF
    The donor/acceptor (D/A) substituted pi-conjugated organic molecules possess extremely fast nonlinear optical (NLO) response time that is purely electronic in origin. This makes them promising candidates for optoelectronic applications. In the present study, we utilized four hybrid density functionals (B3LYP, B97-2, PBE0, BMK), Hartree-Fock, and second order Moller-Plesset correlation energy correction, truncated at second-order (MP2) methods with different basis sets to estimate molecular first hyperpolarizability (beta) of D/A-substituted benzenes and stilbenes (D=OMe, OH, NMe2, NH2; A=NO2, CN). The results of density functional theory (DFT) calculations are compared to those of MP2 method and to the experimental data. We addressed the following questions: (1) the accurate techniques to compare calculated results to each other and to experiment, (2) the choice of the basis set, (3) the effect of molecular planarity, and (4) the choice of the method. Comparison of the absolute values of hyperpolarizabilities obtained computationally and experimentally is complicated by the ambiguities in conventions and reference values used by different experimental groups. A much more tangible way is to compare the ratios of beta\u27s for two (or more) given molecules of interest that were calculated at the same level of theory and measured at the same laboratory using the same conventions and reference values. Coincidentally, it is the relative hyperpolarizabilities rather than absolute ones that are of importance in the rational molecular design of effective NLO materials. This design includes prediction of the most promising candidates from particular homologous series, which are to be synthesized and used for further investigation. In order to accomplish this goal, semiquantitative level of accuracy is usually sufficient. Augmentation of the basis set with polarization and diffuse functions changes beta by 20%; however, further extension of the basis set does not have significant effect. Thus, we recommend 6-31+G(*) basis set. We also show that the use of planar geometry constraints for the molecules, which can somewhat deviate from planarity in the gas phase, leads to sufficient accuracy (with an error less than 10%) of predicted values. For all the molecules studied, MP2 values are in better agreement with experiment, while DFT hybrid methods overestimate beta values. BMK functional gives the best agreement with experiment, with systematic overestimation close to the factor of 1.4. We propose to use the scaled BMK results for prediction of molecular hyperpolarizability at semiquantitative level of accuracy

    Quantum chemistry of the minimal CdSe clusters

    Get PDF
    Colloidal quantum dots are semiconductor nanocrystals (NCs) which have stimulated a great deal of research and have attracted technical interest in recent years due to their chemical stability and the tunability of photophysical properties. While internal structure of large quantum dots is similar to bulk, their surface structure and passivating role of capping ligands (surfactants) are not fully understood to date. We apply ab initio wavefunction methods, density functional theory, and semiempirical approaches to study the passivation effects of substituted phosphine and amine ligands on the minimal cluster Cd2Se2, which is also used to benchmark different computational methods versus high level ab initio techniques. Full geometry optimization of Cd2Se2 at different theory levels and ligand coverage is used to understand the affinities of various ligands and the impact of ligands on cluster structure. Most possible bonding patterns between ligands and surface Cd/Se atoms are considered, including a ligand coordinated to Se atoms. The degree of passivation of Cd and Se atoms (one or two ligands attached to one atom) is also studied. The results suggest that B3LYP/LANL2DZ level of theory is appropriate for the system modeling, whereas frequently used semiempirical methods (such as AM1 and PM3) produce unphysical results. The use of hydrogen atom for modeling of the cluster passivating ligands is found to yield unphysical results as well. Hence, the surface termination of II-VI semiconductor NCs with hydrogen atoms often used in computational models should probably be avoided. Basis set superposition error, zero-point energy, and thermal corrections, as well as solvent effects simulated with polarized continuum model are found to produce minor variations on the ligand binding energies. The effects of Cd-Se complex structure on both the electronic band gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy difference) and ligand binding energies are systematically examined. The role played by positive charges on ligand binding is also explored. The calculated binding energies for various ligands L are found to decrease in the order PMe3 \u3e OPH3 \u3e NH2Me \u3e = NH3 \u3e = NMe3 \u3e PMe3 \u3e PH3 for neutral clusters and OPMe3 \u3e OPH3 \u3e PMe3 \u3e = NMe3 \u3e = NH2Me \u3e = NH3 \u3e PH3 and OPMe3 \u3e OPH3 \u3e NH2Me \u3e = NMe3 \u3e = PMe3 \u3e = NH3 \u3e PH3 for single and double ligations of positively charged Cd2Se22+ cluster, respectively

    Weak antiferromagnetic coupling in molecular ring is predicted correctly by density functional theory plus Hubbard U

    Get PDF
    We apply density functional theory with empirical Hubbard U parameter (DFT+U) to study Mn-based molecular magnets. Unlike most previous DFT+U studies, we calibrate U parameters for both metal and ligand atoms using five binuclear manganese complexes as the benchmarks. We note delocalization of the spin density onto acetate ligands due to pi-back bonding, inverting spin polarization of the acetate oxygen atoms relative to that predicted from superexchange mechanism. This inversion may affect the performance of the models that assume strict localization of the spins on magnetic centers for the complexes with bridging acetate ligands. Next, we apply DFT+U methodology to Mn-12 molecular wheel and find antiparallel spin alignment for the weakly interacting fragments Mn-6, in agreement with experimental observations. Using the optimized geometry of the ground spin state instead of less accurate experimental geometry was found to be crucial for this good agreement. The protocol tested in this study can be applied for the rational design of single molecule magnets for molecular spintronics and quantum computing applications

    Thermally controlled preferential molecular aggregation state in a thiacarbocyanine dye

    Get PDF
    Herein we report the experimental and theoretical study of the temperature dependence of a thiacarbocyanine dye in its monomer, H- and J-aggregates states. We demonstrate the ability to control the ratio of monomer, H- and/or J-aggregates with heat. We link such a control to the conformation dependence of the molecule. An alternative way to gain access to the dominating species without changing the concentration as a complete switching mechanism between all the present species is proposed. The results presented in this work lead to a better understanding of thiacarbocyanine dye\u27s behavior

    Linear and nonlinear optical characterizations of a monomeric symmetric squaraine-based dye in solution

    Get PDF
    The photophysical properties of a symmetric squaryllium dye, namely, 2,4-bis[4-(N,N-dibutylamino)-2-hydroxyphenyl] squaraine (SQ), in its monomer form in acetone solution, have been thoroughly studied by means of one-photon absorption (1PA) and two-photon absorption (2PA), excitation anisotropy, fluorescence emission, fluorescence quantum yield, and excited state absorption. The results show that there is a strong one-photon allowed absorption band in the near IR region associated with intramolecular charge transfer. Higher one-photon allowed and forbidden singlet excited states were also revealed by absorption and excitation anisotropy. A relatively high fluorescence quantum yield (0.44) was measured for this dye. The nonlinear optical characterization of SQ in solution confirms the ability of squaraine dyes to be used as good two-photon absorbers. Additionally, it was found that this dye presents both saturable and reverse saturable absorption effects. Density functional theory calculations of the 1PA and 2PA electronic spectra of SQ were carried out to support the experimental data. A detailed analysis of the symmetry and energy of the orbitals involved in the lowest five electronic transitions is presented and discussed in relation to the behavior observed experimentally

    Quantum chemistry of quantum dots: Effects of ligands and oxidation

    Get PDF
    We report Gaussian basis set density functional theory (DFT) calculations of the structure and spectra of several colloidal quantum dots (QDs) with a (CdSe)(n) core (n=6,15,17), that are either passivated by trimethylphosphine oxide ligands, or unpassivated and oxidized. From the ground state geometry optimization results we conclude that trimethylphosphine oxide ligands preserve the wurtzite structure of the QDs. Evaporation of the ligands may lead to surface reconstruction. We found that the number of two-coordinated atoms on the nanoparticle\u27s surface is the critical parameter defining the optical absorption properties. For (CdSe)(15) wurtzite-derived QD this number is maximal among all considered QDs and the optical absorption spectrum is strongly redshifted compared to QDs with threefold coordinated surface atoms. According to the time-dependent DFT results, surface reconstruction is accompanied by a significant decrease in the linear absorption. Oxidation of QDs destroys the perfection of the QD surface, increases the number of two-coordinated atoms and results in the appearance of an infrared absorption peak close to 700 nm. The vacant orbitals responsible for this near infrared transition have strong Se-O antibonding character. Conclusions of this study may be used in optimization of engineered nanoparticles for photodetectors and photovoltaic devices
    • …
    corecore