85 research outputs found

    Measurement of complement receptor 1 on neutrophils in bacterial and viral pneumonia

    Get PDF
    BACKGROUND: A reliable prediction of the causative agent of community-acquired pneumonia (CAP) is not possible based on clinical features. Our aim was to test, whether the measurement of the expression of complement receptors or Fcγ receptors on neutrophils and monocytes would be a useful preliminary test to differentiate between bacterial and viral pneumonia. METHODS: Sixty-eight patients with CAP were studied prospectively. Thirteen patients had pneumococcal pneumonia; 13 patients, influenza A pneumonia; 5 patients, atypical pneumonia, and 37 patients, aetiologically undefined pneumonia. Leukocyte receptor expression was measured within 2 days of hospital admission. RESULTS: The mean expression of complement receptor 1 (CR1) on neutrophils was significantly higher in the patients with pneumococcal pneumonia than in those with influenza A pneumonia. The mean expression of CR1 was also significantly higher in aetiologically undefined pneumonia than in influenza A pneumonia, but there was no difference between pneumococcal and undefined pneumonia. CONCLUSION: Our results suggest that the expression of CR1 is higher in classical bacterial pneumonia than in viral pneumonia. Determination of the expression of CR1 may be of value as an additional rapid tool in the aetiological diagnosis, bacterial or viral infection, of CAP. These results are preliminary and more research is needed to assess the utility of this new method in the diagnostics of pneumonia

    alphabeta T cell receptors as predictors of health and disease

    Get PDF
    The diversity of antigen receptors and the specificity it underlies are the hallmarks of the cellular arm of the adaptive immune system. T and B lymphocytes are indeed truly unique in their ability to generate receptors capable of recognizing virtually any pathogen. It has been known for several decades that T lymphocytes recognize short peptides derived from degraded proteins presented by major histocompatibility complex (MHC) molecules at the cell surface. Interaction between peptide-MHC (pMHC) and the T cell receptor (TCR) is central to both thymic selection and peripheral antigen recognition. It is widely assumed that TCR diversity is required, or at least highly desirable, to provide sufficient immune coverage. However, a number of immune responses are associated with the selection of predictable, narrow, or skewed repertoires and public TCR chains. Here, we summarize the current knowledge on the formation of the TCR repertoire and its maintenance in health and disease. We also outline the various molecular mechanisms that govern the composition of the pre-selection, naive and antigen-specific TCR repertoires. Finally, we suggest that with the development of high-throughput sequencing, common TCR \u27signatures\u27 raised against specific antigens could provide important diagnostic biomarkers and surrogate predictors of disease onset, progression and outcome

    High-Resolution Description of Antibody Heavy-Chain Repertoires in Humans

    Get PDF
    Antibodies' protective, pathological, and therapeutic properties result from their considerable diversity. This diversity is almost limitless in potential, but actual diversity is still poorly understood. Here we use deep sequencing to characterize the diversity of the heavy-chain CDR3 region, the most important contributor to antibody binding specificity, and the constituent V, D, and J segments that comprise it. We find that, during the stepwise D-J and then V-DJ recombination events, the choice of D and J segments exert some bias on each other; however, we find the choice of the V segment is essentially independent of both. V, D, and J segments are utilized with different frequencies, resulting in a highly skewed representation of VDJ combinations in the repertoire. Nevertheless, the pattern of segment usage was almost identical between two different individuals. The pattern of V, D, and J segment usage and recombination was insufficient to explain overlap that was observed between the two individuals' CDR3 repertoires. Finally, we find that while there are a near-infinite number of heavy-chain CDR3s in principle, there are about 3–9 million in the blood of an adult human being

    Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD)

    Get PDF
    • …
    corecore