4 research outputs found

    Arabidopsis WRKY50 and TGA transcription factors synergistically activate expression of PR1

    No full text
    Arabidopsis PR1 is a salicylic acid (SA) inducible marker gene for systemic acquired resistance (SAR). However, the regulation of PR1 in plants is poorly understood. In this study, we showed that AtWRKY50 transcription factor binds to two promoter elements of PR1 via its DNA binding domain. Interestingly, the DNA-binding sites for AtWRKY50 deviate significantly from the consensus WRKY binding W-box. The binding sites are located in close proximity to the binding sites for TGA transcription factors. Transactivation experiments in Arabidopsis protoplasts derived from wild type, npr1-1 and tga256 mutant plants indicated that AtWRKY50 alone was able to induce expression of a PR1::β-glucuronidase (GUS) reporter gene, independent of TGAs or NPR1. However, co-expression of TGA2 or TGA5 with AtWRKY50 synergistically enhanced expression to high levels. Yeast-2-hybrid assays and bimolecular fluorescence complementation (BiFC) experiments revealed that AtWRKY50 could interact with TGA2 and TGA5. Using electrophoretic mobility shift assays (EMSA) it was established that AtWRKY50 and TGA2 or TGA5 simultaneously bind to the PR1 promoter. Taken together, these results support a role of AtWRKY50 in SA-induced expression of PR1. Highlights: AtWRKY50 specifically binds to LS10 region of PR1 promoter and interacts with TGAs to synergistically activate PR1 expression

    Host genotype, soil composition, and geo-climatic factors shape the fonio seed microbiome

    No full text
    Abstract Background Fonio (Digitaria exilis), an orphan millet crop, is the oldest indigenous crop in West Africa. Although the yield is low due to pre-domestication characteristics, the quick maturation time, drought tolerance, and the ability to thrive on poor soils make fonio a climate-smart crop. Being holobionts, plants evolve in close interaction with microbial partners, which is crucial for plant phenology and fitness. As seeds are the bottleneck of vertically transmitting plant microbiota, we proposed to unravel the seed microbiome of the under-domesticated and resilient crop fonio. Our study investigated the bacterial seed endophyte diversity across 126 sequenced fonio accessions from distinct locations in West Africa. We conducted a correlation study of the structures and functions of the seed-associated microbiomes with the native geo-climate and soil structure data. We also performed Genome-wide association studies (GWAS) to identify genetic loci associated with seed endophyte diversity. Result We report that fonio millet has diverse heritable seed endophytic taxa. We analyzed the seed microbiomes of 126 fonio accessions and showed that despite the diversity of microbiomes from distinct geographical locations, all fonio genetic groups share a core microbiome. In addition, we observed that native soil composition, geo-climatic factors, and host genotype correlate with the seed microbiomes. GWAS analysis of genetic loci associated with endophyte seed bacterial diversity identified fonio SNPs associated with genes functioning in embryo development and stress/defense response. Conclusion Analysis of the seed endophyte of the climate-smart crop fonio indicated that despite possessing a heritable core microbiome, native conditions may shape the overall fonio seed microbiomes in different populations. These distinct microbiomes could play important roles in the adaptation of fonio to different environmental conditions. Our study identified the seed microbiome as a potential target for enhancing crop resilience to climate stress in a sustainable way. Video Abstrac

    Dynamics of ribosome composition and ribosomal protein phosphorylation in immune signaling in Arabidopsis thaliana

    No full text
    International audienceAbstract In plants, the detection of microbe-associated molecular patterns (MAMPs) induces primary innate immunity by the activation of mitogen-activated protein kinases (MAPKs). We show here that the MAMP-activated MAPK MPK6 not only modulates defense through transcriptional regulation but also via the ribosomal protein translation machinery. To understand the effects of MPK6 on ribosomes and their constituent ribosomal proteins (RPs), polysomes, monosomes and the phosphorylation status of the RPs, MAMP-treated WT and mpk6 mutant plants were analysed. MAMP-activation induced rapid changes in RP composition of monosomes, polysomes and in the 60S ribosomal subunit in an MPK6-specific manner. Phosphoproteome analysis showed that MAMP-activation of MPK6 regulates the phosphorylation status of the P-stalk ribosomal proteins by phosphorylation of RPP0 and the concomitant dephosphorylation of RPP1 and RPP2. These events coincide with a significant decrease in the abundance of ribosome-bound RPP0s, RPP1s and RPP3s in polysomes. The P-stalk is essential in regulating protein translation by recruiting elongation factors. Accordingly, we found that RPP0C mutant plants are compromised in basal resistance to Pseudomonas syringae infection. These data suggest that MAMP-induced defense also involves MPK6-induced regulation of P-stalk proteins, highlighting a new role of ribosomal regulation in plant innate immunity

    Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition

    Get PDF
    Abstract In both plants and animals, nucleotide-binding leucine-rich repeat (NLR) immune receptors play critical roles in pathogen recognition and activation of innate immunity. In plants, NLRs recognise pathogen-derived effector proteins and initiate effector-triggered immunity (ETI). However, the molecular mechanisms that link NLR-mediated effector recognition and downstream signalling are not fully understood. By exploiting the well-characterised tomato Prf/Pto NLR resistance complex, we identified the 14-3-3 proteins TFT1 and TFT3 as interacting partners of both the NLR complex and the protein kinase MAPKKKα. Moreover, we identified the helper NRC proteins (NLR-required for cell death) as integral components of the Prf /Pto NLR recognition complex. Notably our studies revealed that TFTs and NRCs interact with distinct modules of the NLR complex and, following effector recognition, dissociate facilitating downstream signalling. Thus, our data provide a mechanistic link between activation of immune receptors and initiation of downstream signalling cascades
    corecore