91 research outputs found

    Absence of synaptic regulation by phosducin in retinal slices.

    Get PDF
    Phosducin is an abundant photoreceptor protein that binds G-protein Ξ²Ξ³ subunits and plays a role in modulating synaptic transmission at photoreceptor synapses under both dark-adapted and light-adapted conditions in vivo. To examine the role of phosducin at the rod-to-rod bipolar cell (RBC) synapse, we used whole-cell voltage clamp recordings to measure the light-evoked currents from both wild-type (WT) and phosducin knockout (Pd(-/-)) RBCs, in dark- and light-adapted retinal slices. Pd(-/-) RBCs showed smaller dim flash responses and steeper intensity-response relationships than WT RBCs, consistent with the smaller rod responses being selectively filtered out by the non-linear threshold at the rod-to-rod bipolar synapse. In addition, Pd(-/-) RBCs showed a marked delay in the onset of the light-evoked currents, similar to that of a WT response to an effectively dimmer flash. Comparison of the changes in flash sensitivity in the presence of steady adapting light revealed that Pd(-/-) RBCs desensitized less than WT RBCs to the same intensity. These results are quantitatively consistent with the smaller single photon responses of Pd(-/-) rods, owing to the known reduction in rod G-protein expression levels in this line. The absence of an additional synaptic phenotype in these experiments suggests that the function of phosducin at the photoreceptor synapse is abolished by the conditions of retinal slice recordings

    Myosin III Illuminates the Mechanism of Arrestin Translocation

    Get PDF
    AbstractRecent studies have revealed that light adaptation of both vertebrate and invertebrate photoreceptors is accompanied by massive translocations of major signaling proteins in and out of the cellular compartments where visual signal transduction takes place. In this issue of Neuron, Lee and Montell report a breakthrough in understanding the mechanism of arrestin translocation in Drosophila. They show that arrestin is carried into the light-sensitive microvilli by phosphoinositide-enriched vesicles driven by a myosin motor

    RGS9 Knockout Causes a Short Delay in Light Responses of ON-Bipolar Cells

    Get PDF
    RGS9 and R9AP are components of the photoreceptor-specific GTPase activating complex responsible for rapid inactivation of the G protein, transducin, in the course of photoresponse recovery from excitation. The amount of this complex in photoreceptors is strictly dependent on the expression level of R9AP; consequently, the knockouts of either RGS9 or R9AP cause comparable delays in photoresponse recovery. While RGS9 is believed to be present only in rods and cones, R9AP is also expressed in dendritic tips of ON-bipolar cells, which receive synaptic inputs from photoreceptors. Recent studies demonstrated that knockouts of R9AP and its binding partner in ON-bipolar cells, RGS11, cause a small delay in ON-bipolar cell light responses manifested as a delayed onset of electroretinography b-waves. This led the authors to suggest that R9AP and RGS11 participate in regulating the kinetics of light responses in these cells. Here we report the surprising finding that a nearly identical b-wave delay is observed in RGS9 knockout mice. Given the exclusive localization of RGS9 in photoreceptors, this result argues for a presynaptic origin of the b-wave delay in this case and perhaps in the case of the R9AP knockout as well, since R9AP is expressed in both photoreceptors and ON-bipolar cells. We also conducted a detailed analysis of the b-wave rising phase kinetics in both knockout animal types and found that, despite a delayed b-wave onset, the slope of the light response is unaffected or increased, dependent on the light stimulus intensity. This result is inconsistent with a slowdown of response propagation in ON-bipolar cells caused by the R9AP knockout, further arguing against the postsynaptic nature of the delayed b-wave phenotype in RGS9 and R9AP knockout mice

    Rod Outer Segment Structure Influences the Apparent Kinetic Parameters of Cyclic GMP Phosphodiesterase

    Get PDF
    Cyclic GMP hydrolysis by the phosphodiesterase (PDE) of retinal rod outer segments (ROS) is a key amplification step in phototransduction. Definitive estimates of the turnover number, kcat, and of the Km are crucial to quantifying the amplification contributed by the PDE. Published estimates for these kinetic parameters vary widely; moreover, light-dependent changes in the Km of PDE have been reported. The experiments and analyses reported here account for most observed variations in apparent Km, and they lead to definitive estimates of the intrinsic kinetic parameters in amphibian rods. We first obtained a new and highly accurate estimate of the ratio of holo-PDE to rhodopsin in the amphibian ROS, 1:270. We then estimated the apparent kinetic parameters of light-activated PDE of suspensions of disrupted frog ROS whose structural integrity was systematically varied. In the most severely disrupted ROS preparation, we found Km = 95 microM and kcat = 4,400 cGMP.s-1. In suspensions of disc-stack fragments of greater integrity, the apparent Km increased to approximately 600 microM, though kcat remained unchanged. In contrast, the Km for cAMP was not shifted in the disc stack preparations. A theoretical analysis shows that the elevated apparent Km of suspensions of disc stacks can be explained as a consequence of diffusion with hydrolysis in the disc stack, which causes active PDEs nearer the center of the stack to be exposed to a lower concentration of cyclic GMP than PDEs at the disc stack rim. The analysis predicts our observation that the apparent Km for cGMP is elevated with no accompanying decrease in kcat. The analysis also predicts the lack of a Km shift for cAMP and the previously reported light dependence of the apparent Km for cGMP. We conclude that the intrinsic kinetic parameters of the PDE do not vary with light or structural integrity, and are those of the most severely disrupted disc stacks

    Phosducin Regulates the Expression of Transducin Ξ²Ξ³ Subunits in Rod Photoreceptors and Does Not Contribute to Phototransduction Adaptation

    Get PDF
    For over a decade, phosducin's interaction with the Ξ²Ξ³ subunits of the G protein, transducin, has been thought to contribute to light adaptation by dynamically controlling the amount of transducin heterotrimer available for activation by photoexcited rhodopsin. In this study we directly tested this hypothesis by characterizing the dark- and light-adapted response properties of phosducin knockout (Pdβˆ’/βˆ’) rods. Pdβˆ’/βˆ’ rods were notably less sensitive to light than wild-type (WT) rods. The gain of transduction, as measured by the amplification constant using the Lamb-Pugh model of activation, was 32% lower in Pdβˆ’/βˆ’ rods than in WT rods. This reduced amplification correlated with a 36% reduction in the level of transducin Ξ²Ξ³-subunit expression, and thus available heterotrimer in Pdβˆ’/βˆ’ rods. However, commonly studied forms of light adaptation were normal in the absence of phosducin. Thus, phosducin does not appear to contribute to adaptation mechanisms of the outer segment by dynamically controlling heterotrimer availability, but rather is necessary for maintaining normal transducin expression and therefore normal flash sensitivity in rods
    • …
    corecore