236 research outputs found

    Vacuum Structure of Two-Dimensional ϕ4\phi^4 Theory on the Orbifold S1/Z2S^{1}/Z_{2}

    Get PDF
    We consider the vacuum structure of two-dimensional ϕ4\phi^4 theory on S1/Z2S^{1}/Z_{2} both in the bosonic and the supersymmetric cases. When the size of the orbifold is varied, a phase transition occurs at Lc=2π/mL_{c}=2\pi/m, where mm is the mass of ϕ\phi. For L<LcL<L_{c}, there is a unique vacuum, while for L>LcL>L_{c}, there are two degenerate vacua. We also obtain the 1-loop quantum corrections around these vacuum solutions, exactly in the case of L<LcL<L_{c} and perturbatively for LL greater than but close to LcL_{c}. Including the fermions we find that the "chiral" zero modes around the fixed points are different for LLcLL_{c}. As for the quantum corrections, the fermionic contributions cancel the singular part of the bosonic contributions at L=0. Then the total quantum correction has a minimum at the critical length LcL_{c}.Comment: Revtex, 15 pages, 3 eps figure

    Kernel functions and B\"acklund transformations for relativistic Calogero-Moser and Toda systems

    Full text link
    We obtain kernel functions associated with the quantum relativistic Toda systems, both for the periodic version and for the nonperiodic version with its dual. This involves taking limits of previously known results concerning kernel functions for the elliptic and hyperbolic relativistic Calogero-Moser systems. We show that the special kernel functions at issue admit a limit that yields generating functions of B\"acklund transformations for the classical relativistic Calogero-Moser and Toda systems. We also obtain the nonrelativistic counterparts of our results, which tie in with previous results in the literature.Comment: 76 page

    Operator ordering in Two-dimensional N=1 supersymmetry with curved manifold

    Full text link
    We investigate an operator ordering problem in two-dimensional N=1 supersymmetric model which consists of n real superfields. There arises an operator ordering problem when the target space is curved. We have to fix the ordering in quantum operator properly to obtain the correct supersymmetry algebra. We demonstrate that the super-Poincar\'{e} algebra fixes the correct operator ordering. We obtain a supercurrent with correct operator ordering and a central extension of supersymmetry algebra.Comment: 7 page

    Quasi-doubly periodic solutions to a generalized Lame equation

    Full text link
    We consider the algebraic form of a generalized Lame equation with five free parameters. By introducing a generalization of Jacobi's elliptic functions we transform this equation to a 1-dim time-independent Schroedinger equation with (quasi-doubly) periodic potential. We show that only for a finite set of integral values for the five parameters quasi-doubly periodic eigenfunctions expressible in terms of generalized Jacobi functions exist. For this purpose we also establish a relation to the generalized Ince equation.Comment: 15 pages,1 table, accepted for publication in Journal of Physics

    Classical and quantum three-dimensional integrable systems with axial symmetry

    Full text link
    We study the most general form of a three dimensional classical integrable system with axial symmetry and invariant under the axis reflection. We assume that the three constants of motion are the Hamiltonian, HH, with the standard form of a kinetic part plus a potential dependent on the position only, the zz-component of the angular momentum, LL, and a Hamiltonian-like constant, H~\widetilde H, for which the kinetic part is quadratic in the momenta. We find the explicit form of these potentials compatible with complete integrability. The classical equations of motion, written in terms of two arbitrary potential functions, is separated in oblate spheroidal coordinates. The quantization of such systems leads to a set of two differential equations that can be presented in the form of spheroidal wave equations.Comment: 17 pages, 3 figure

    Semi-classical buckling of stiff polymers

    Full text link
    A quantitative theory of the buckling of a worm like chain based on a semi-classical approximation of the partition function is presented. The contribution of thermal fluctuations to the force-extension relation that allows to go beyond the classical Euler buckling is derived in the linear and non-linear regime as well. It is shown that the thermal fluctuations in the nonlinear buckling regime increase the end-to-end distance of the semiflexible rod if it is confined to 2 dimensions as opposed to the 3 dimensional case. Our approach allows a complete physical understanding of buckling in D=2 and in D=3 below and above the Euler transition.Comment: Revtex, 17 pages, 4 figure

    Elasticity of semiflexible polymers in two dimensions

    Full text link
    We study theoretically the entropic elasticity of a semi-flexible polymer, such as DNA, confined to two dimensions. Using the worm-like-chain model we obtain an exact analytical expression for the partition function of the polymer pulled at one end with a constant force. The force-extension relation for the polymer is computed in the long chain limit in terms of Mathieu characteristic functions. We also present applications to the interaction between a semi-flexible polymer and a nematic field, and derive the nematic order parameter and average extension of the polymer in a strong field.Comment: 16 pages, 3 figure

    Peculiarities of the hidden nonlinear supersymmetry of Poschl-Teller system in the light of Lame equation

    Full text link
    A hidden nonlinear bosonized supersymmetry was revealed recently in Poschl-Teller and finite-gap Lame systems. In spite of the intimate relationship between the two quantum models, the hidden supersymmetry in them displays essential differences. In particular, the kernel of the supercharges of the Poschl-Teller system, unlike the case of Lame equation, includes nonphysical states. By means of Lame equation, we clarify the nature of these peculiar states, and show that they encode essential information not only on the original hyperbolic Poschl-Teller system, but also on its singular hyperbolic and trigonometric modifications, and reflect the intimate relation of the model to a free particle system.Comment: 10 pages, typos corrected; to appear in J. Phys.

    Ince's limits for confluent and double-confluent Heun equations

    Full text link
    We find pairs of solutions to a differential equation which is obtained as a special limit of a generalized spheroidal wave equation (this is also known as confluent Heun equation). One solution in each pair is given by a series of hypergeometric functions and converges for any finite value of the independent variable zz, while the other is given by a series of modified Bessel functions and converges for z>z0|z|>|z_{0}|, where z0z_{0} denotes a regular singularity. For short, the preceding limit is called Ince's limit after Ince who have used the same procedure to get the Mathieu equations from the Whittaker-Hill ones. We find as well that, when z0z_{0} tends to zero, the Ince limit of the generalized spheroidal wave equation turns out to be the Ince limit of a double-confluent Heun equation, for which solutions are provided. Finally, we show that the Schr\"odinger equation for inverse fourth and sixth-power potentials reduces to peculiar cases of the double-confluent Heun equation and its Ince's limit, respectively.Comment: Submitted to Journal of Mathmatical Physic

    Dynamical Casimir effect in oscillating media

    Full text link
    We show that oscillations of a homogeneous medium with constant material coefficients produce pairs of photons. Classical analysis of an oscillating medium reveals regions of parametric resonance where the electromagnetic waves are exponentially amplified. The quantum counterpart of parametric resonance is an exponentially growing number of photons in the same parameter regions. This process may be viewed as another manifestation of the dynamical Casimir effect. However, in contrast to the standard dynamical Casimir effect, photon production here takes place in the entire volume and is not due to time dependence of the boundary conditions or material constants
    corecore