32 research outputs found

    Ionophore A23187 induced reductions in toad urinary bladder epithelial cell oxidative phosphorylation and viability

    Full text link
    The divalent cation ionophore A23187 increased oxygen consumption by isolated epithelial cells from toad urinary bladder, an increase similar to that seen with 2,4-dinitrophenol, a classic uncoupler of mitochondrial oxidative phosphorylation. This respiratory stimulation was not seen in calcium-free incubation media. That this A23187 induced rise in cell oxygen consumption was due to a primary uncoupling action on mitochondrial oxidative phosphorylation rather than secondary to stimulation of cellular transport processes and mediated via increased cellular ADP levels was suggested by the ability of A23187 to release the inhibition of cellular respiration by oligomycin, an inhibitor of the mitochondrial proton ATPase which blocks the stimulation of mitochondrial respiration by ADP. Since active transepithelial ion transport and cellular energy production are closely linked processes, the uncoupling action of A23187 in the presence of extracellular calcium is sufficient to account for an acute decline in active ion transport across epithelia without invoking other calcium-mediated processes. Furthermore, isolated epithelial cells exposed to A23187 for 90 min had greater than 50% loss of viability, as measured by failure of Trypan blue exclusion. The subacute A23187 induced declines in transepithelial transport, therefore, may be secondary to its non-specific effects on cell viability.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47447/1/424_2004_Article_BF00658484.pd

    Prostaglandin- and theophylline-induced Cl secretion in rat distal colon is inhibited by microtubule inhibitors

    Full text link
    The aim of the present study was to examine the possible role of microtubules in chloride secretion by distal rat colon stimulated by prostaglandin (PGE 2 ) and theophylline. Distal colonic tissue from male rats was mounted in Ussing chambers, and short-circuit current (I sc ) was measured to assess chloride secretion. Three microtubule inhibitors, colchicine, nocodazole, and taxol, all inhibited the stimulated I sc and reduced the 60-min integrated secretory response to PGE 2 and theophylline (â–ȘI sc dt) by 39–52%, whereas the inactive colchicine analog lumicolchicine did not. Atropine and tetrodotoxin had no effect on stimulated chloride secretion. To confirm the source of I sc , unidirectional 22 Na + and 36 Cl − fluxes were measured in tissues exposed to lumicolchicine (control) or colchicine. Control tissues absorbed both chloride [5.0 (1.1–8.6) (median and 95% confidence interval) ÎŒeq/cm 2 /hr] and sodium [2.8 (0.9–7.2) ÎŒeq/cm 2 /hr], and this net absorption was reduced by 96% and 79%, respectively, by treatment with PGE 2 and theophylline due to an increase in serosal-to-mucosal chloride and sodium movement. Colchicine-treated tissues exhibited similar net basal chloride and sodium absorption that was reduced by 71% and 75%, respectively, by treatment with PGE 2 and theophylline. Thus the PGE 2 - and theophylline-induced increase in chloride secretion was significantly reduced by colchicine ( P <0.05 by Wilcoxon rank-sum test), whereas colchicine had no effect on PGE 2 - and theophylline-induced changes in sodium fluxes. Furthermore, the colchinine-related changes in stimulated chloride secretion were numerically similar to colchicine-related changes in stimulated I sc . These findings indicate that microtubules are required for normal PGE 2 - and theophylline-induced chloride secretion in distal rat colon and suggest that induced chloride secretion may involve vesicular insertion of ion transporters into the plasma membrane or other microtubule-dependent regulatory processes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44414/1/10620_2005_Article_BF01299864.pd

    Molecular variability in Amerindians: widespread but uneven information

    Full text link

    The Renal Acidoses

    No full text
    corecore