31 research outputs found

    The Era of Biosensors and Diagnostics

    No full text

    Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations

    No full text
    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure–electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of –OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of –OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules

    Expanding the Monolayer Scope for Nucleic Acid-Based Electrochemical Sensors Beyond Thiols on Gold: Alkylphosphonic Acids on ITO

    No full text
    Electrochemical biosensors are a powerful and rapidly evolving molecular monitoring technology. Evidenced by the success of the continuous glucose monitor in managing Type 1 Diabetes, these sensors are capable of precise, accurate measurements in unprocessed biological environments. Nucleic acid-based electrochemical sensors (NBEs) are a specific type of biosensor that employs the target binding and conformational dynamics of nucleic acids for signal transduction. Currently, the vast majority of NBEs are fabricated via self-assembly of alkylthiols on Au electrodes. However, this architecture is limited in scope, as Au electrodes are not universally deployable for all potential NBE applications. Here, to expand the repertoire of materials on which NBEs can be made, we describe the multistep procedure for creating sensing monolayers of alkylphosphonic acids on a conductive oxide surface. Using such monolayers on indium tin oxide (ITO)-coated glass slides, we couple redox reporter-modified nucleic acids and demonstrate signaling of procaine-binding NBE sensors in buffer and human serum. We investigate the operational stability of these NBE sensors to reveal faster signal loss relative to benchmark thiol-on-gold sensing layers, a result that arises due to poor stability of the underlying ITO. Finally, we discuss future directions to continue expansion of NBE sensor materials and applications

    Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations

    No full text
    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure–electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of –OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of –OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules

    Perspective—The Feasibility of Continuous Protein Monitoring in Interstitial Fluid

    No full text
    Real-time continuous monitoring of proteins in-vivo holds great potential for personalized medical applications. Unfortunately, a prominent knowledge gap exists in the fundamental biology regarding protein transfer and correlation between interstitial fluid and blood. Additionally, technological sensing will require affinity-based platforms that cannot be robustly protected in-vivo and will therefore be challenged in sensitivity, longevity, and fouling over multi-day to week timelines. Here we use electrochemical aptamer sensors as a model system to discuss further research necessary to achieve continuous protein sensing

    Nanometer Scale Scanning Electrochemical Microscopy Instrumentation

    No full text
    We report the crucial components required to perform scanning electrochemical microscopy (SECM) with nanometer-scale resolution. The construction and modification of the software and hardware instrumentation for nanoscale SECM are explicitly explained including (1) the LabVIEW code that synchronizes the SECM tip movement with the electrochemical response, (2) the construction of an isothermal chamber to stabilize the nanometer scale gap between the tip and substrate, (3) the modification of a commercial bipotentiostat to avoid electrochemical tip damage during SECM experiments, and (4) the construction of an SECM stage to avoid artifacts in SECM images. These findings enabled us to successfully build a nanoscale SECM, which can be utilized to map the electrocatalytic activity of individual nanoparticles in a typical ensemble sample and study the structure/reactivity relationship of single nanostructures

    Stability of N-Heterocyclic Carbene Monolayers under Continuous Voltammetric Interrogation

    No full text
    N-Heterocyclic carbenes (NHCs) are promising monolayer-forming ligands that can overcome limitations of thiol-based monolayers in terms of stability, surface functionality, and reactivity across a variety of transition-metal surfaces. Recent publications have reported the ability of NHCs to support biomolecular receptors on gold substrates for sensing applications and improved tolerance to prolonged biofluid exposure relative to thiols. However, important questions remain regarding the stability of these monolayers when subjected to voltage perturbations, which is needed for applications with electrochemical platforms. Here, we investigate the ability of two NHCs, 1,3-diisopropylbenzimidazole and 5-(ethoxycarbonyl)-1,3-diisopropylbenzimidazole, to form monolayers via self-assembly from methanolic solutions of their trifluoromethanesulfonate salts. We compare the electrochemical behavior of the resulting monolayers relative to that of benchmark mercaptohexanol monolayers in phosphate-buffered saline. Within the −0.15 to 0.25 V vs Ag|AgCl voltage window, NHC monolayers are stable on gold surfaces, wherein they electrochemically perform like thiol-based monolayers and undergo similar reorganization kinetics, displaying long-term stability under incubation in buffered media and under continuous voltammetric interrogation. At negative voltages, NHC monolayers cathodically desorb from the electrode surface at lower bias (−0.1 V) than thiol-based monolayers (−0.5 V). At voltages more positive than 0.25 V, NHC monolayers anodically desorb from electrode surfaces at similar voltages to thiol-based monolayers. These results highlight new limitations to NHC monolayer stability imposed by electrochemical interrogation of the underlying gold electrodes. Our results serve as a framework for future optimization of NHC monolayers on gold for electrochemical applications, as well as structure–functionality studies of NHCs on gold.</p
    corecore