84 research outputs found

    Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations

    No full text
    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure–electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of –OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of –OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules

    The Era of Biosensors and Diagnostics

    No full text

    Expanding the Monolayer Scope for Nucleic Acid-Based Electrochemical Sensors Beyond Thiols on Gold: Alkylphosphonic Acids on ITO

    No full text
    Electrochemical biosensors are a powerful and rapidly evolving molecular monitoring technology. Evidenced by the success of the continuous glucose monitor in managing Type 1 Diabetes, these sensors are capable of precise, accurate measurements in unprocessed biological environments. Nucleic acid-based electrochemical sensors (NBEs) are a specific type of biosensor that employs the target binding and conformational dynamics of nucleic acids for signal transduction. Currently, the vast majority of NBEs are fabricated via self-assembly of alkylthiols on Au electrodes. However, this architecture is limited in scope, as Au electrodes are not universally deployable for all potential NBE applications. Here, to expand the repertoire of materials on which NBEs can be made, we describe the multistep procedure for creating sensing monolayers of alkylphosphonic acids on a conductive oxide surface. Using such monolayers on indium tin oxide (ITO)-coated glass slides, we couple redox reporter-modified nucleic acids and demonstrate signaling of procaine-binding NBE sensors in buffer and human serum. We investigate the operational stability of these NBE sensors to reveal faster signal loss relative to benchmark thiol-on-gold sensing layers, a result that arises due to poor stability of the underlying ITO. Finally, we discuss future directions to continue expansion of NBE sensor materials and applications

    Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations

    No full text
    Flavonoids are natural products commonly found in the human diet that show antioxidant, anti-inflammatory and anti-hepatotoxic activities. These nutraceutical properties may relate to the electrochemical activity of flavonoids. To increase the understanding of structure–electrochemical activity relations and the inductive effects that OH substituents have on the redox potential of flavonoids, we carried out square-wave voltammetry experiments and ab initio calculations of eight flavonoids selected following a systematic variation in the number of hydroxyl substituents and their location on the flavan backbone: three flavonols, three anthocyanidins, one anthocyanin and the flavonoid backbone flavone. We compared the effect that the number of –OH groups in the ring B of flavan has on the oxidation potential of the flavonoids considered, finding linear correlations for both flavonols and anthocyanidins ( R 2 = 0.98 ). We analyzed the effects that position and number of –OH substituents have on electron density distributions via ab initio quantum chemical calculations. We present direct correlations between structural features and oxidation potentials that provide a deeper insight into the redox chemistry of these molecules
    • …
    corecore