2 research outputs found
The T1-dark-rim: A novel imaging sign for detecting smoldering inflammation in multiple sclerosis
Purpose: Paramagnetic rim lesions (PRLs), usually identified in susceptibility-weighted imaging (SWI), are a promising prognostic biomarker of disability progression in multiple sclerosis (MS). However, SWI is not routinely performed in clinical practice. The objective of this study is to define a novel imaging sign, the T1-dark rim, identifiable in a standard 3DT1 gradient-echo inversion-recovery sequence, such as 3D T1 turbo field echo (3DT1FE) and explore its performance as a SWI surrogate to define PRLs. Methods: This observational cross-sectional study analyzed MS patients who underwent 3T magnetic resonance imaging (MRI) including 3DT1TFE and SWI. Rim lesions were evaluated in 3DT1TFE, processed SWI, and SWI phase and categorized as true positive, false positive, or false negative based on the value of the T1-dark rim in predicting SWI phase PRLs. Sensitivity and positive predictive values of the T1-dark rim for detecting PRLs were calculated. Results: Overall, 80 rim lesions were identified in 63 patients (60 in the SWI phase and 78 in 3DT1TFE; 58 true positives, 20 false positives, and two false negatives). The T1-dark rim demonstrated 97% sensitivity and 74% positive predictive value for detecting PRLs. More PRLs were detected in the SWI phase than in processed SWI (60 and 57, respectively). Conclusion: The T1-dark rim sign is a promising and accessible novel imaging marker to detect PRLs whose high sensitivity may enable earlier detection of chronic active lesions to guide MS treatment escalation. The relevance of T1-dark rim lesions that are negative on SWI opens up a new field for analysis
Kappa free light chains index in multiple sclerosis very long-term prognosis
IntroductionThe role of the kappa-free light chain (kFLC) in the diagnosis of multiple sclerosis (MS) and, to a lesser extent, its role as a medium-term prognostic marker have been extensively studied. This study aimed to explore its potential as a long-term prognostic marker for MS.MethodsWe performed an exploratory retrospective observational study by selecting patients systemically followed up in our MS unit with available cerebrospinal fluid and serum samples at the time of initial evaluation. Two groups were defined: benign MS (bMS), defined as patients with Expanded Disability Status Scale (EDSS) ≤ 3 at 10 years of follow-up, and aggressive MS (aMS), defined as patients with EDSS ≥ 6 at 15 years of follow-up. Clinical variables were collected, and the immunoglobulin G (IgG) index, kFLC index, and oligoclonal bands (OCB) were determined for all patients and compared between the groups.ResultsTwenty bMS and 15 aMS patients were included in this study. Sixty percent (21/35) were female, and the mean age at the time of the first symptom was 31.5 ± 9.45 years, with no statistical differences between groups. Median follow-up time was 19.8 years (Interquartile range, IQR 15.9–24.6). The median EDSS scores at the last follow-up were 1.5 and 7.5 in the bMS and the aMS group, respectively. No statistically significant differences were found in the kFLC index between the two groups (136.6 vs. 140.27, p=0.59). The IgG index was positive in 62.9% of patients (55% bMS vs. 73.3% aMS, p>0.05), and OCB was positive in 88.6% (90% bMS vs. 86.7% aMS, p>0.05). A significant positive correlation was found between IgG and kFLC indices (rs = 0.85, p<0.001).ConclusionGiven the absence of differences between the two groups with opposite disease courses, it is unlikely that the kFLC index is a reliable and powerful marker of long-term prognosis in MS