3 research outputs found

    Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest

    No full text
    Aim: To assess the hypotheses that compound leaves of trees in the Amazon forest are an adaptation to drought and/or rapid growth.\ud \ud Location: Amazon rain forest, South America.\ud \ud Methods: Genera from 137 permanent forest plots spread across Amazonia were classified into those with compound leaves and those with simple leaves. Metrics of compound leaf prevalence were then calculated for each plot and regression models that accounted for spatial autocorrelation were used to identify associations between climate variables and compound leaf structure. We also tested for associations between compound leaf structure and a variety of ecological variables related to life history and growth strategies, including wood density, annual increase in diameter and maximum height.\ud \ud Results: One plant family, Fabaceae, accounts for 53% of compound-leaved individuals in the dataset, and has a geographical distribution strongly centred on north-east Amazonia. On exclusion of Fabaceae from the analysis we found no significant support for the seasonal drought hypothesis. However, we found evidence supporting the rapid growth hypothesis, with possession of compound leaves being associated with faster diameter growth rates and lower wood densities.\ud \ud Main conclusion: This study provides evidence that possession of compound leaves constitutes one of a suite of traits and life-history strategies that promote rapid growth in rain forest trees. Our findings highlight the importance of carefully considering the geographical distribution of dominant taxa and spatial clustering of data points when inferring ecological causation from environment–trait associations

    Evolutionary diversity is associated with wood productivity in Amazonian forests

    No full text
    Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.</p

    On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions

    No full text
    corecore