200 research outputs found

    Experimental Measures of Topological Sector Fluctuations in the F-Model

    Full text link
    The two dimensional F-model is an ice-rule obeying model, with a low temperature antiferroelectric state and high temperature critical Coulomb phase. Polarization in the system is associated with topological defects in the form of system-spanning windings which makes it an ideal system on which to observe topological sector fluctuations, as have been discussed in the context of spin ice and Berezinskii-Kosterlitz-Thouless (BKT) systems. Here we develop Lieb and Baxter's historic solutions of the F-model to exactly calculate relevant properties, several apparently for the first time. We further calculate properties not amenable to exact solution by an approximate cavity method and by referring to established scaling results. Of particular relevance to topological sector fluctuations are the exact results for the applied field polarization and the "energetic susceptibility". The latter is a both a measure of topological sector fluctuations and, surprisingly, in this case, a measure of the order parameter correlation exponent. In the high temperature phase, the temperature tunes the density of topological defects and algebraic correlations, with the energetic susceptibility undergoing a jump to zero at the antiferroelectric ordering temperature, analogous to the "universal jump" in BKT systems. We discuss how these results are relevant to experimental systems, including to spin ice thin films and three-dimensional dipolar spin ice and water ice, where we find that an analogous "universal jump" has previously been established in numerical studies. This unexpected result suggests a universal limit on the stability of perturbed Coulomb phases that is independent of dimension and of the order of the transition. Experimental results on water ice Ih are not inconsistent with this proposition. We complete the paper by relating our results to experimental studies of artificial spin ice arrays.Comment: 12 pages, 7 figure

    Chemical properties of thymoquinone, a monoterpene isolated from the seeds of Nigella sativa Linn.

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Thymoquinone is the main ingredient of the essential oil extracted from the seeds of Nigella sativa L. (Ranunculaceae). The monoterpene is considered to be the active pharmaceutical ingredient in the seeds, which have traditionally been highly prized for their medicinal properties. The compound has been the focus of a considerable number of pharmacological investigations and has been reviewed regularly for its action against a variety of inflammatory diseases, its effect on metabolic syndrome, and its potential anticancer properties. While discussing the chemical and pharmacological properties of thymoquinone, recent reviews have reflected on the keto-enol tautomerism of thymoquinone. Specifically, thymoquinone is described as a tautomeric compound, where the keto-form is said to be the major configuration that is responsible for its pharmacological properties [1, 2]. In both reviews, reference is made to a 2005 review by Salem [3]. The latter review discusses a range of activities of thymoquinone, mainly on cell signalling and antioxidant (scavenging) molecular mediators involved in the process of inflammation. However, no mention is made in this review of keto- or enol forms of thymoquinone. Moreover, the chemical structure of thymoquinone does not allow keto-enol tautomerism

    miRNAs as Regulators of Antidiabetic Effects of Fucoidans

    Get PDF
    open access articleDiabetes mellitus is a metabolic disease with a high mortality rate worldwide. MicroRNAs (miRNAs), and other small noncoding RNAs, serve as endogenous gene regulators through binding to specific sequences in RNA and modifying gene expression toward up- or down-regulation. miRNAs have become compelling therapeutic targets and play crucial roles in regulating the process of insulin resistance. Fucoidan has shown potential function as an a-amylase inhibitor, which may be beneficial in the management of type 2 diabetes mellitus. In recent years, many studies on fucoidan focused on the decrease in blood glucose levels caused by ingesting low-glucose food or glucose-lowering components. However, the importance of miRNAs as regulators of antidiabetic effects was rarely recognized. Hence, this review emphasizes the antidiabetic mechanisms of fucoidan through regulation of miRNAs. Fucoidan exerts a vital antidiabetic effect by regulation of miRNA expression and thus provides a novel biological target for future research

    Leveraging New Plans in AgentSpeak(PL)

    Get PDF
    Many papers have been written on the anticancer properties of dietary flavonoids, and a range of potential mechanisms of action of flavonoids. However, most dietary flavonoids - notably polyphenolic flavonoids—have very poor ADME properties, and the levels necessary to stop growth of tumour cells cannot be sustained in a human body trough dietary intake alone. At present no flavonoid based drugs are clinically used in cancer therapy. Thus, whereas epidemiological and pre-clinical data seem to indicate a high potential for flavonoids, from the point of view of the pharmaceutical industry and drug developers, they are considered poor candidates. The flavones—which constitute a subgroup of the flavonoids—show some structural analogy with oestrogen and are known to interact with human oestrogen receptors, either as agonist or as antagonist. They are classed as phytoestrogens, and may play a role in cancer prevention through a mechanism of action possibly similar to that of the clinically used medication tamoxifen. Flavones are abundantly present in common fruits and vegetables, many of which have been associated with cancer prevention. Their phytoestrogen activity makes that they can assert their biological action at concentrations that are realistically achievable in the human systemic circulation

    Spectral-fingerprinting: microstate readout via remanence ferromagnetic resonance in artificial spin systems

    Get PDF
    Artificial spin ices (ASIs) are magnetic metamaterials comprising geometrically tiled strongly-interacting nanomagnets. There is significant interest in these systems spanning the fundamental physics of many-body systems to potential applications in neuromorphic computation, logic, and recently reconfigurable magnonics. Magnonics focused studies on ASI have to date have focused on the in-field GHz spin-wave response, convoluting effects from applied field, nanofabrication imperfections ('quenched disorder') and microstate-dependent dipolar field landscapes. Here, we investigate zero-field measurements of the spin-wave response and demonstrate its ability to provide a 'spectral fingerprint' of the system microstate. Removing applied field allows deconvolution of distinct contributions to reversal dynamics from the spin-wave spectra, directly measuring dipolar field strength and quenched disorder as well as net magnetisation. We demonstrate the efficacy and sensitivity of this approach by measuring ASI in three microstates with identical (zero) magnetisation, indistinguishable via magnetometry. The zero-field spin-wave response provides distinct spectral fingerprints of each state, allowing rapid, scaleable microstate readout. As artificial spin systems progress toward device implementation, zero-field functionality is crucial to minimize the power consumption associated with electromagnets. Several proposed hardware neuromorphic computation schemes hinge on leveraging dynamic measurement of ASI microstates to perform computation for which spectral fingerprinting provides a potential solution

    Spectral fingerprinting: microstate readout via remanence ferromagnetic resonance in artificial spin ice

    Get PDF
    Artificial spin ices (ASIs) are magnetic metamaterials comprising geometrically tiled strongly-interacting nanomagnets. There is significant interest in these systems spanning the fundamental physics of many-body systems to potential applications in neuromorphic computation, logic, and recently reconfigurable magnonics. Magnonics focused studies on ASI have to date have focused on the in-field GHz spin-wave response, convoluting effects from applied field, nanofabrication imperfections (‘quenched disorder’) and microstate-dependent dipolar field landscapes. Here, we investigate zero-field measurements of the spin-wave response and demonstrate its ability to provide a ‘spectral fingerprint’ of the system microstate. Removing applied field allows deconvolution of distinct contributions to reversal dynamics from the spin-wave spectra, directly measuring dipolar field strength and quenched disorder as well as net magnetisation. We demonstrate the efficacy and sensitivity of this approach by measuring ASI in three microstates with identical (zero) magnetisation, indistinguishable via magnetometry. The zero-field spin-wave response provides distinct spectral fingerprints of each state, allowing rapid, scaleable microstate readout. As artificial spin systems progress toward device implementation, zero-field functionality is crucial to minimize the power consumption associated with electromagnets. Several proposed hardware neuromorphic computation schemes hinge on leveraging dynamic measurement of ASI microstates to perform computation for which spectral fingerprinting provides a potential solution

    Application of dietary supplements in the prevention of type 2 diabetes-related cardiovascular complications

    Get PDF
    Joint review by the Leicester Institute for Pharmaceutical Innovation and the Institute for Allied Health Sciences Research, based on invited plenary lecture presented by Prof. Randolph Arroo at the conference 'Natural Products in Drug Discovery and Human Health' in Lisbon, 28-31 July, 2019 The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Type 2 diabetes, which accounts for the vast majority of diabetes worldwide is the result of a lowered sensitivity of the insulin receptors, resulting in impaired sugar metabolism is and chronic hyperglycaemia. There is no cure for type 2 diabetes, though some people with pre-diabetes and diabetes manage to reach and hold normal blood sugar levels, thus avoiding most of the complications that come with chronic hyperglycaemia; this is sometimes referred to as ‘reversing diabetes’. A healthy diet, with sufficient amounts of fruits, nuts, and vegetables is positively correlated with maintaining glycaemic control and prevention of diabetes-related complications. Whereas many different dietary phytochemicals have been considered to play a role in the glycaemic control and in prevention of degenerative diseases, there is currently no consensus on a particular mode of action. In this review, a range of pre-clinical studies and intervention studies, including randomised double-blind, placebo controlled clinical studies, are considered that investigate the role of dietary compounds in the prevention of type 2 diabetes-related complications. Three generic mechanisms of action can be discerned: compounds that reduce sugar uptake, compounds that restore insulin function, and compounds that attenuate the effects of oxidative stress and chronic inflammation. Particularly the latter has received wide attention in the form of activation of the Nrf2-antioxidant response element signalling pathway by various polyphenolic or triterpenoid compounds. Although individual reports may present models with clear looking signalling cascades, an overall review shows that many biologically active compounds in the human diet are pan assay interference substances that alter several cell functions simultaneously, which makes them less attractive for drug development
    • …
    corecore