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1.  INTRODUCTION

Diabetes is one of the most common metabolic disorders in the 
world and the prevalence of diabetes has been increasing in the last 
50 years [1,2]. As of 2013, there were 382 million people with dia-
betes worldwide, and this number is expected to rise to 592 million 
by 2035 [3]. Type 2 diabetes mellitus (T2DM), named non-insulin- 
dependent diabetes mellitus, is a disease characterized by insulin 
resistance (IR) and impaired pancreatic b-cell function that affects 
more than 170 million people worldwide [4,5]. Sustained hyperglyce-
mia is the main diagnostic trait of this disease. People with T2DM are 
at increased risk for serious health problems, including cardiovascu-
lar disease, premature death, blindness, kidney failure, amputations, 
fractures, frailty, depression, and cognitive decline [6]. The mortality 
rate is almost double that of persons without the disorder [7]. T2DM 
needs to be recognized as a serious problem, and research into the 
best ways to prevent or treat this disorder needs urgent attention.

MicroRNAs (miRNAs) are a class of noncoding RNAs about 22 
nucleotides in length [8]. They play crucial roles in regulation of 
developmental processes, cell differentiation, cell proliferation, 
and apoptosis pathways through interference with gene translation 
by sequence-specific binding to protein-coding mRNAs [9,10].  

In recent years, miRNAs have been widely used in therapeutics of 
complex diseases researches, such as diabetes. Glycans were con-
firmed to affect the levels of target miRNAs, which offered the new 
strategies and approaches to deal with the challenge of T2DM.

Fucoidans consist of a series of sulfated fucose-rich polysaccharides 
that are mainly derived from various species of brown seaweed [11]. 
It is a type of complex and heterogeneous sulfated polysaccharide, 
consisting of l-fucose and sulfate ester groups [12–14]. However, 
there are only few reports about miRNAs as regulators of the anti
diabetic effects of fucoidan. Herein, this review summarized the anti-
diabetic mechanisms of fucoidan by focusing on regulating miRNAs.

2.  TYPE 2 DIABETES MELLITUS

The pathogenesis involves abnormalities in insulin action, insulin 
secretion, and endogenous glucose output. IR represents the key 
role in the pathogenesis of T2DM [15]. It causes multiple deleterious 
effects to contribute to diabetes-related complications and is defined 
as the impaired sensitivity of tissues, such as liver, skeletal muscle, 
and adipose tissues. Up till now, the major mechanisms of inducing 
IR by destroying the insulin signaling cascade have been identified.

Fucoidan was regarded as a crucial glucose regulator that could act 
on genes and enzymes existing on mitochondria, nucleus, endo-
plasmic reticulum (ER), and cell membrane. A fucoidan-blocked 
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A B S T R AC T
Diabetes mellitus is a metabolic disease with a high mortality rate worldwide. MicroRNAs (miRNAs), and other small noncoding 
RNAs, serve as endogenous gene regulators through binding to specific sequences in RNA and modifying gene expression 
toward up- or down-regulation. miRNAs have become compelling therapeutic targets and play crucial roles in regulating the 
process of insulin resistance. Fucoidan has shown potential function as an a-amylase inhibitor, which may be beneficial in the 
management of type 2 diabetes mellitus. In recent years, many studies on fucoidan focused on the decrease in blood glucose 
levels caused by ingesting low-glucose food or glucose-lowering components. However, the importance of miRNAs as regulators 
of antidiabetic effects was rarely recognized. Hence, this review emphasizes the antidiabetic mechanisms of fucoidan through 
regulation of miRNAs. Fucoidan exerts a vital antidiabetic effect by regulation of miRNA expression and thus provides a novel 
biological target for future research.
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mitochondrial pathway was discovered on a T2DM or inflammatory 
cells, on which fucoidan were found to be able to decrease the level 
of tumor necrosis factor-a (TNF-a) and Bid, which were crucial fac-
tors to promote mitochondrial effete pathways. The activated TNF-
a would trigger the activity of c-Jun N-terminal protein kinase and 
caspase. The Bid promote the Bax concentrate on the membrane of 
mitochondria in the form of homodimer to change the mitochon-
drial membrane. Thus, the cytochrome c, a key gene determining 
the b-cell apoptosis, was delivered out of the mitochondria to injure 
the b-cell via facilitating the activity of caspases 3 and 9 [16]. What’s 
more, the fucoidan could restore the insulin synthesis of b-cell via 
Sirt-1-dependent signaling pathway. It could promote the gluca-
gon-like peptide-1 (GLP-1) and GLP-1 receptor combining on the 
surface of b-cell to ameliorate its death. Then, the phosphorylation of 
GAPDH was activated by the combination to elevate the Sirt-1 activ-
ity. Sirt-1 plays a crucial role in insulin secretion, which can promote 
the activity of phosphorylation of protein kinase B (AKT) and fork-
head box protein A2 (FOXA2). AKT could inhibit the phosphoryla-
tion of FOX O1 and pancreatic and duodenal homeobox-1 (PDX-1), 
thus together with FOXA2 activating PDX-1 to promote insulin 

production [17]. The adenosine monophosphate-activated protein 
kinase (AMPK) pathway induced by ER stress could be ameliorated 
by fucoidan, thus maintain glucose homeostasis. It is reported that 
fucoidan could promote the activity of liver kinase B1 and AKT, 
which could activate the phosphorylation of downstream substance 
AKT, which control the glucose uptake and metabolism by activat-
ing AMPK. Then the silence of mechanistic target of rapamycin  
complex 1 (mTORC1) (a tumor suppressor) caused by AMPK could 
increase the insulin receptor substance (IRS) level to promote glu-
cose metabolism [18]. In addition, fucoidan could stimulate insulin 
release from b-cell through cyclic AMP (cAMP) pathway. It was 
found that fucoidan could act on the upstream substance of cAMP, 
the activation of adenylyl cyclase, and the silence of phosphodiester-
ase would control the breakdown of cAMP. cAMP plays a vital role 
in controlling the release of insulin through regulating the concen-
tration of Ca2+ on both sides of cell membrane (Figure 1).

Insulin is secreted by the b-cells, stimulating the tyrosine kinase 
activity and subsequently phosphorylating various intracellular sub-
strates, including IRS-1 and IRS-2. Phosphorylated IRS-1 and IRS-2 

Figure 1 | This flow chart summarizes the mechanisms of IR. Y, tyrosine; S, serine; IRS-1/2, substrate 1/2 of the insulin receptor; PI3K, phosphoinositide 
kinase 3; TNF-a, tumor necrosis factor-a ; GLUT4, glucose transporter 4; JNK, c-Jun-N terminal kinase pathway; FFA, free fatty acids; ROS, Reactive oxygen 
species; NF-κB, nuclear factor kappa-light-chain enhancer of activated B cells; AKT, phosphorylation of protein kinase B; TCA, tricarboxylic acid cycle; ETC, 
electron transport chain; SOD, superoxide dismutase enzymes; P22, membrane partner protein; NOXs, NADPH oxidases; MAPK, mitogen-activated protein 
kinase; mToR, mechanistic target of rapamycin complex; PKC-q, protein kinase C theta; AMPK, Adenosine monophosphate activated protein kinase.
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trigger the insulin signal via activation of phosphatidylinositol-4,5-bi-
sphosphate 3-kinase-protein kinase B (PI3K-AKT). There are several 
pathways that can induce IR [19]. First, excessive availability of lipids 
causes translocation of protein kinase C-q (PKC-q ), and high con-
centrations of amino acids cause activation of the rapamycin-sensi-
tive mTOR pathway, thus inducing serine phosphorylation of IRS-1. 
Besides, TNF-a changes the insulin receptor signaling pathways by 
diverting IRS-1 away via sphingomyelinases. The JNKs, which are 
activated by circulating cytokines and free fatty acids, can also directly 
inhibit phosphorylation of IRS-1 and can contribute to chronic IR. 
Reactive oxygen species (ROS) are by-products of oxygen consump-
tion and cellular metabolism, which are formed by partial reduction 
of molecular oxygen. Nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidases and mitochondria are two major contributors of 
ROS. They have been associated with IR and directly interfere with 
insulin signaling. Hyperglycemia, the hallmark metabolic abnormal-
ity associated with T2DM, is the key point in the treatment of diabe-
tes. Recently, therapies directed at other coincident features, such as 
obesity and IR, have also been a major focus of research and therapy 
[20]. Food and the functional components rich in phytochemicals, 
such as polyphenols, polysaccharides, oligosaccharides, and so on, 
can be very effective antidiabetic agents [15,21–25].

3.  FUCOIDANS

Fucoidans are commonly sulfated marine polysaccharides and 
have wide spectrum of bioactivities [11,22]. They are constituents 
of several species of brown seaweed and some marine invertebrates 
(such as sea urchins and cucumbers). Fucoidans were first isolated 
by Kylin [26] from brown algae: Ascophyllum nodosum, Fucus vesic-
ulosus, Laminaria digitata, and Laminaria saccharina. Since then, 
fucoidans have been identified in more than 70 species of brown 
algae (Phaeophyceae), in the body wall of some marine inverte-
brates such as sea cucumber (Holothuroidae), and in the egg jelly 
coat of sea urchins (Echinoidea) [27]. Ecklonia cava, F. vesiculosus, 
and Cladosiphon okamuranus were most widely studied species for 
fucoidans [28]. Polysaccharides have distinct functional properties 

that are influenced by their structures. Fucoidans are a group of 
fucans, i.e., sulfated polysaccharides extracted from brown seaweeds 
and are characterized by fucose-rich sulfated groups. Other examples 
of fucans are ascophyllans (xylofucoglycuronan and xylofucoma-
nuronan) and sargassans (glycuronofucogalactan). The position of 
sulfate groups has great influence on the beneficial biological activ-
ities of marine sulfated polysaccharides. The bioactive properties of 
fucoidans extracted from different species of seaweed depend on 
their compositional structure, charge density, distribution, and bond-
ing of the sulfate substitutions [29]. Most of fucoidans have complex 
chemical compositions. Except for fucose and sulfate, they contain 
monosaccharide-, glucuronic acid-, and acetyl-groups, which can 
make structural analysis quite complex. Fucoidans extracted from 
different species of brown seaweed and by different methods showed 
a great variety in structures. Ponce et al. [30] found that fucoidan 
extracted at room temperature was composed mainly of l-fucose, 
d-galactose, and ester sulfate, yet when extracted at 70°C, it mainly 
consisted of fucose, mannose, uronic acids, and low proportions of 
sulfate ester. Furthermore, different extraction methods (i.e., micro-
wave-assisted extraction, conditions of pressure, extraction time, 
and algae/water radio) greatly affected the total fucoidan yields [31]. 
The molecular weights of fucoidan play a vital role in their antioxi-
dant and anticoagulant activities [32]. Specific enzymes that degrade 
the fucoidans were used to simplify their structure and decrease the 
difficulties of analysis [33]. Several fucoidan-degrading enzymes 
have been isolated and characterized. Furthermore, the degradation 
products of fucoidans had a high potential in the medical exploita-
tion [34]. With the development of technologies, the production of 
well-characterized reproducible fucoidan fractions on a commercial 
scale has become possible in recent years, which will make therapies 
from fucoidan a realizable goal [35].

In the previous few decades, the biological activities of fucoidans 
isolated from different marine species have been widely reported 
(Figure 2). They include antivirus, antitumor, immunomodula-
tory, anti-inflammatory, blood lipids reducing, anticoagulant, anti-
thrombotic, antioxidant, and anti-complementary properties; also, 
hepatoprotective, uroprotective, and renoprotective properties 

Figure 2 | Biological effects of fucoidans. The 
letters represent related polysaccharides, which 
had biological activities.
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Table 1 | The trials of fucoidans linked to diabetes mellitus 

Sources Structures Mechanisms References

Undaria pinnatifida l-Fucose together with xylose, galactose, and  
mannose

Improve insulin sensitivity Kim et al. [37]

Acaudina molpadioides [→3-a-l-Fucp-1→3-a-l-Fucp2,4(OS3
–)-1→3-a- 

l-Fucp-1→3-a-l-Fucp2(OS3
–) ‒ 1]n

Blocked mitochondrial pathway in 
pancreatic islet cell apoptosis via  
regulation of inflammatory cytokines

Wang et al. [16]

Ascophyllum nodosum a-(1-3) linked fucose with a low proportion of a-(1-4) 
linked fucose or a repeating a-(1-3) and a-(1-4)-link-
age

Inhibit a-amylase activity Kim et al. [38]

Turbinaria ornata Presence of alkane proton in two methyl group, alkyl at 
sulfonyl attached proton, methoxy attached proton at 
H-4, present 3-linked d-galactopyranosyl, a terminal 
a-l-fucose, 3-linked a-l-fucose, and  
3,4 distribution of a-l-fucose.

Inhibit a-amylase activity Lakshmanasenthil et al. [39]

Sargassum wightii Presence of alkane proton in two methyl group, alkyl at 
sulfonyl attached proton, methoxy attached proton at 
H-4, present 3-linked d-galactopyranosyl, a terminal 
a-l-fucose, 3-linked a-l-fucose and  
3,4 distribution of a-l-fucose.

Inhibit a-d-glucosidase Kumar et al. [40]

have been recorded [36]. Compared with other polysaccharides, 
algal sulfated fucoidans are widely available from a variety of low-
cost sources and have been investigated in recent years to develop 
the medical drugs or functional foods.

4.  FUCOIDANS AS ANTIDIABETIC AGENTS

Fucoidans isolated from brown seaweeds had potential beneficial 
effects on diabetes. Moreover, different fucoidan demonstrated 
hypoglycemic effects and showed some variety in their mechanisms 
of action (Table 1). Fucoidans and their biological activities have 
been extensively studied and reported in the past 100 years. The 
excitement lies in the reports on success in the treatment of diabetes. 
Fucoidans were mainly used to treat diabetes-related complications, 
such as diabetic nephropathy and retinopathy. The major signaling 
pathways have been investigated and reported on to explain the 
mechanisms of antidiabetic effects of fucoidans (Figure 3).

The phenomenon has been confirmed in a range of in vitro and  
in vivo trials. Studies showed that fucoidans could act as a-glucosidase  
inhibitors in vitro, which was associated with diabetes. What is 
more, the inhibitory effect of fucoidan on a-glucosidase was largely 
dependent on its structure. Moreover, the structural characteristics 
of fucoidan were linked to the inhibition of a-amylase. Compared 
with the fraction from F. vesiculosus, fucoidans from A. nodosum 
with their high sulfate and medium-molecular weight exhibited 
stronger a-amylase inhibitory activity (Kim et al., 2015).

Fucoidan from F. vesiculosus decreased the fasting blood glucose 
and the weight of diabetic mice. Using nuclear magnetic resonance 
(NMR) spectroscopy, it was found that the major components were 
the a-l-Fuc, a-l-Fuc(2-SO3

–), and a-l-Fuc(2,3-diSO3
–), with alternat-

ing 1 → 3 or 1 → 4 linkages [41]. In addition, fucoidans have been 
verified to provide pancreatic protection. Fucoidan from Acaudina 
molpadioides protected pancreatic islet against cell apoptosis via 
inhibition of inflammation in type 2 diabetic mice. Its structure has 
been clarified as [→3-a-l-Fucp-1→3-a-l-Fucp2,4(OS3

–)‒1→3-a-
l-Fucp-1→3-a-l-Fucp2(OS3

–) ‒ 1]n [16]. In streptozotocin-treated 
b-cells and mice, fucoidan ameliorated pancreatic b-cell death and 

impaired insulin synthesis via the Sirt-1-dependent pathway [17]. 
It might stimulate insulin secretion and provide pancreatic protec-
tion via the cAMP signaling pathway [42]. Additionally, insulin 
sensitivity could be enhanced by increasing the expression levels 
of diabetes-related genes in 3T3-L1 adipocytes [43]. Fucoidans sig-
nificantly reduced blood glucose levels in diabetic mice [37]. They 
could decrease the FBG levels in the streptozotocin-induced dia-
betic rats [44]. The intake of low-molecular-weight fucoidan and 
fucoxanthin reduced the FBG levels [45]. Low-molecular-weight 
fucoidan could improve the action of insulin via AMPK stimulation 
[18]. Besides, obesity is strongly associated with an increased risk 
of T2DM and cardiovascular disease. It also showed that fucoidans 
could improve the IR by significantly reducing the levels of FBG, 
fasting insulin (FINS), total cholesterol (TC), triglyceride (TG) 
and low-density-lipoprotein-cholesterol (LDL-C), and increasing 
the contents of high-density lipoprotein-cholesterol (HDL-C) [44].

5.  MicroRNA AND T2DM

miRNAs are synthesized by RNA polymerase II and form transcripts 
that fold back on themselves to form short hairpins. RNA polymerase 
II transcribes the long RNA precursors (pre-miRNAs) [46], processed 
by RNase III enzymes, such as Drosha and Dicer [47,48], and then 
incorporated into the RNA interference effector complex (RISCs) 
[49], which mediates the degradation of targeted mRNA transcripts 
and translational arrest, and negatively regulates gene expression at 
the posttranscriptional level by binding to the 3′-untranslated region 
of target RNAs [50,51] (Figure 4). Since the discovery of miRNAs in 
Caenorhabditis elegans, more than 28,600 miRNAs have been found in 
plants, animals, and viruses [52]. About one-third of known miRNAs 
were embedded within introns of protein-coding genes. They are 
co-transcribed with their host genes, which make that miRNA and 
protein expression are regulated in a coordinated fashion [53]. From 
studies of miRNAs functions in cancer cells, many of the functional 
roles have shown the involvement of miRNAs in human diseases 
[46]. Almost 60% of human protein-coding genes were potentially 
regulated by miRNAs in health and disease [54]. Mechanisms involv-
ing miRNAs in disease processes are very complex; some diseases 
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Figure 3 | Main signaling pathways recruited to adjust the blood glucose.

were even associated with more than 20 miRNAs. Currently, with the 
development of investigation, an increasing number of researchers 
have focused on the relationship between diabetes and miRNAs.

There is no doubt that miRNAs will directly or indirectly affect 
our health. Abnormal expression of miRNAs was observed in 
plasma, serum, and whole blood in patients with T2DM [55–58]. 
By using microarray screening and miRNA network inference, 
target miRNAs, i.e., miR-15a, miR-20b, miR-21, miR-24, miR-126, 
miR-191, miR-197, miR-223, miR320, and miR-486 levels were 
lowered, while miR-28-3p expression was increased in plasma of 
diabetic patients. When levels of serum miRNA in newly diag-
nosed patients with T2DM and prediabetes or susceptible indi-
viduals were measured, serum levels of miR-9, miR-29a, miR-30d, 

miR34a, miR-124a, miR-146a, and miR-375 levels in T2DM 
patients were significantly higher than those in susceptable people. 
When compared with prediabetic individuals, patients with T2DM 
had serum levels of miR-9, miR-29a, miR-34a, miR-146a, and 
miR-375, which were significantly upregulated in T2DM patients. 
However, there were no significant differences in the expression of 
miRNAs between prediabetic patients and susceptible individuals 
[56]. There have also been reports that abnormal expression of 
miRNAs was found in the whole blood and exosome of the met-
abolic syndrome population [55]. Among patients with T2DM, 
miR-27a, miR150, miR-192, miR-320a, and miR-375 were upreg-
ulated, and then the increase levels of miR-27a and miR-320a were 
associated with higher FBG. Moreover, obesity also could influence 
the expression of miRNAs in patients with diabetes. Meanwhile, 
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aberrant patterns of expression of miRNAs were observed in  
adipocytes [59,60].

MiRNAs play a key role in the pancreas [61,62], where they regu-
late insulin production and insulin secretion in b-cells of the pan-
creatic islets [63,64]. MiR-375 was important for normal pancreatic 
islet formation and had many effects on islet b-cells, including 
insulin expression and secretion, islet b-cell proliferation. MiR-375  
directly reduced PDK-1 protein levels, which in turn led to a 
decreased glucose stimulation that otherwise would have initiated 
expression of the insulin gene and DNA synthesis in b-cells [65].

Consistent with the above evidence, the overexpression of miR-30d  
inhibited the insulin gene expression, which was related to the 
deficiency of insulin synthesis in diabetic patients [66]. The early 

inflammatory factors of diabetes mellitus type 1 interfere with 
insulin secretion and destroy islet b-cells. This process coincides 
with abnormal expression levels of miR-21, miR-34a, and miR-
146 [67–69]. Meanwhile, the activation of p53 pathway induced by  
palmitic acid (PA) was shown to lead to the up-regulation of miR-34a  
and miR-146 levels, resulting in the pancreatic b-cell apoptosis and 
the decrease of nutrient-induced insulin secretion [70–73].

More recently, elegant investigations have validated the hypothesis 
that miRNAs are implicated in the target tissue for insulin. Herrera 
et al. [63] reported that the presence of 283 DMT2-related miRNAs 
in adipose, liver, and muscle tissues by comparing microarrays from 
hyperglycemic, intermediate glycemic, and normoglycemic rats. 
They identified 29 miRNAs that showed significant differences, 
nine in adipose tissue, 18 in liver, and two in muscle. The expres-

Figure 4 | A schematic diagram of miRNA synthesis. RNA polymerase II transcribes the long RNA precursors (pri-miRNAs) and processed by Drosha and 
Dicer and incorporated into the RNA interference effector complex, which mediate degradation of targeted mRNA transcripts and translational arrest, negatively 
regulate gene expression at the posttranscriptional level by binding to the 3′-untranslated region of target RNAs.
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sion patterns of five miRNAs were associated with the strain-specific 
glycemic phenotype. MiR-222/miR-27a and miR-195/miR-103 were 
upregulated in adipose tissue and liver, respectively, while miR-10b 
was downregulated in muscle. Likewise, He et al. [74] suggested that 
three paralogs of the miR-29 family were upregulated in muscle, fat 
tissue, and liver of diabetic rats. Overexpression of the miR-29 family 
in 3T3-L1 adipocytes reduced the glucose uptake of insulin stimula-
tion. Compared with non-insulin-stimulated, it was found that miR-
29a and miR-29c were highly expressed in insulin sensitive tissues 
[75,76]. Taken together, these reports have revealed the crucial roles 
of miRNAs in the etiology of type 2 diabetes.

6. � miRNA-TARGETED MODULATION  
BY FUCOIDANS

Dietary phytochemicals have been used to change metabolism and 
alter diseases progression and clinical outcomes [77]. Polysaccharides 
or oligosaccharides from marine seaweed or resources are known to 
affect the levels of miRNAs. Alginate oligosaccharide or fucoidan can 
regulate the levels of miR-29b, miR-29c, and miR-17-5p [78–80]. In 
subjects with metabolic syndrome, specifically obesity, prediabetes, 
and T2DM, a large amount of miRNAs are deregulated, e.g. miR-21, 
miR-24.1, miR-27a, miR-28-3p, miR-29b, miR-30d, miR-34a, miR-93,  
miR-126, miR-146a, miR-148, miR-150, miR-155, and miR-223. These 
miRNAs significantly changed across the diabetes spectrum and were 
associated with measures of pancreatic islet b-cell function and 
glycemic control [81]. The miR-29 family has emerged as important 
regulators of glucose metabolism. It was among the most abundantly 
expressed miRNAs in the pancreas and liver and showed strong reg-
ulatory functions in obesity and diabetes [76]. The miR-29 family of 
miRNAs in humans comprises three mature members, miR-29a, miR-
29b, and miR-29c. MiR-29 has been shown to affect glucose metabolism, 
lipid metabolism, and insulin responsiveness in skeletal muscle, while 
both miR-29a and miR-29c could regulate glucose uptake and insulin- 
stimulated glucose metabolism [82]. Chen et al. [83] have reported 
that miR-29b inhibits progressive renal inflammation and fibrosis in 
type 2 diabetes in db/db mice. Under diabetic conditions, miR-29b 
was largely downregulated in response to advanced glycation end 
product. Besides, Zhu et al. [84] have revealed 32 miRNAs that were 
differentially expressed in gestational diabetes mellitus, including 
five upregulated miRNAs (hsa-miR-16-5p, hsa-miR-17-5p, hsa-miR-
19a-3p, hsa-miR-19b-3p, and hsa-miR-20a-5p). These miRNAs may 
serve as noninvasive biomarkers. Moreover, reduction of miR-17-5p 
and upregulation of miR-29b-3p directly regulated circadian gene 
expression in the maturing islet cells of 10-day-old rats [85].

Until now, many studies have focused on miRNA-targeted modula-
tion of fucoidan against human diseases. Wu et al. [78] showed that 
fucoidan inhibited breast cancer progression by dual regulation of 
the miR-29c/ADAM-12 and miR-17-5p/PTEN axes. Furthermore, 
fucoidan has been confirmed to markedly upregulate miR-29b in 
human hepatocellular carcinoma cells to regulate the DNA methyl
transferase 3B-metastasis suppressor 1 (DNMT3B-MTSS1) axis 
and inhibit epithelial-mesenchymal transition (EMT) (increased 
E-cadherin and decreased N-cadherin). DNMT3B is an important 
downstream target of miR-29b. Induction of miR-29b results in sup-
pression of DNMT3B and a consequent increase in MTSS1, which 
is usually repressed in human hepatocellular carcinoma. It was a 
novel target of DNMT3B [79]. Based on the reported studies, it was 
confirmed that fucoidan could upregulate the level of miR-29b and 

miR-29c and downregulate the level of miR-17-5p, which would 
contribute to treatment of type 2 diabetes. At present, only limited 
data are available on the role of novel antidiabetic polysaccharides 
or oligosaccharides from algae as miRNAs regulators. This prom-
ising field should be explored further, and the fucoidan-miRNAs 
relationship needs to be worked out in more detail.

7.  CONCLUSION

Fucoidan has been widely used in clinical studies and is a novel 
therapeutic agent with potential for the treatment of diabetes. The 
limitation of fucoidan was their poor bioavailability. Even though 
the discovery in this field is still at the infancy stage, the application 
of fucoidan is likely to have a bright future. There is no doubt that 
the regulation of miRNAs by fucoidan could create novel therapeu-
tic strategies for hypoglycemic treatment in T2DM. However, there 
are still some questions that need to be addressed. Due to the lack 
of sufficient understanding of regulation of miRNAs by fucoidan, 
the related research was even more difficult. Systemic approaches 
toward the fucoidan on antidiabetes are almost absent. It is nec-
essary to get more studies to focus on the antidiabetic effects of 
fucoidan through miRNA regulation.
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