2,447 research outputs found
The Neumann problem in thin domains with very highly oscillatory boundaries
In this paper we analyze the behavior of solutions of the Neumann problem
posed in a thin domain of the type with and , defined by smooth
functions and , where the function is supposed to be
-periodic in the second variable . The condition implies
that the upper boundary of this thin domain presents a very high oscillatory
behavior. Indeed, we have that the order of its oscillations is larger than the
order of the amplitude and height of given by the small parameter
. We also consider more general and complicated geometries for thin
domains which are not given as the graph of certain smooth functions, but
rather more comb-like domains.Comment: 20 pages, 4 figure
Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems
We study the spectral behavior of higher order elliptic operators upon domain perturbation. We prove general spectral stability results for Dirichlet, Neumann and intermediate boundary conditions. Moreover, we consider the case of the bi-harmonic operator with those intermediate boundary conditions which ap-pears in the study of hinged plates. In this case, we analyze the spectral behavior when the boundary of the domain is subject to a periodic oscillatory perturbation. We will show that there is a critical oscillatory behavior and the limit problem depends on whether we are above, below or just sitting on this critical value. In particular, in the critical case we identify the strange term appearing in the limiting boundary conditions by using the unfolding method from homogenization theory
Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains
We consider the biharmonic operator subject to homogeneous boundary
conditions of Neumann type on a planar dumbbell domain which consists of two
disjoint domains connected by a thin channel. We analyse the spectral behaviour
of the operator, characterizing the limit of the eigenvalues and of the
eigenprojections as the thickness of the channel goes to zero. In applications
to linear elasticity, the fourth order operator under consideration is related
to the deformation of a free elastic plate, a part of which shrinks to a
segment. In contrast to what happens with the classical second order case, it
turns out that the limiting equation is here distorted by a strange factor
depending on a parameter which plays the role of the Poisson coefficient of the
represented plate.Comment: To appear in "Integral Equations and Operator Theory
- …