134 research outputs found

    Search for inelastic dark matter with the CDMS II experiment

    Full text link
    Results are presented from a reanalysis of the entire five-tower data set acquired with the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory, with an exposure of 969 kg-days. The analysis window was extended to a recoil energy of 150 keV, and an improved surface-event background-rejection cut was defined to increase the sensitivity of the experiment to the inelastic dark matter (iDM) model. Three dark matter candidates were found between 25 keV and 150 keV. The probability to observe three or more background events in this energy range is 11%. Because of the occurrence of these events, the constraints on the iDM parameter space are slightly less stringent than those from our previous analysis, which used an energy window of 10–100 keV. © 2011 American Physical Societ

    Collider Phenomenology with Split-UED

    Get PDF
    We investigate the collider implications of Split Universal Extra Dimensions. The non-vanishing fermion mass in the bulk, which is consistent with the KK-parity, largely modifies the phenomenology of Minimal Universal Exta Dimensions. We scrutinize the behavior of couplings and study the discovery reach of the Tevatron and the LHC for level-2 Kaluza-Klein modes in the dilepton channel, which would indicates the presence of the extra dimensions. Observation of large event rates for dilepton resonances can result from a nontrivial fermion mass profile along the extra dimensions, which, in turn, may corroborate extra dimensional explanation for the observation of the positron excess in cosmic rays.Comment: 23 pages, 15 figure

    Warped Kaluza-Klein Dark Matter

    Full text link
    Warped compactifications of type IIB string theory contain natural dark matter candidates: Kaluza-Klein modes along approximate isometry directions of long warped throats. These isometries are broken by the full compactification, including moduli stabilization; we present a thorough survey of Kaluza-Klein mode decay rates into light supergravity modes and Standard Model particles. We find that these dark matter candidates typically have lifetimes longer than the age of the universe. Interestingly, some choices for embedding the Standard Model in the compactification lead to decay rates large enough to be observed, so this dark matter sector may provide constraints on the parameter space of the compactification.Comment: 37pp; v2. references, minor clarificatio

    Analysis of the low-energy electron-recoil spectrum of the CDMS experiment

    Get PDF
    We report on the analysis of the low-energy electron-recoil spectrum from the CDMS II experiment using data with an exposure of 443.2 kg-days. The analysis provides details on the observed counting rate and possible background sources in the energy range of 2 - 8.5 keV. We find no significant excess in the counting rate above background, and compare this observation to the recent DAMA results. In the framework of a conversion of a dark matter particle into electromagnetic energy, our 90% confidence level upper limit of 0.246 events/kg/day at 3.15 keV is lower than the total rate above background observed by DAMA by 8.9σ\sigma. In absence of any specific particle physics model to provide the scaling in cross section between NaI and Ge, we assume a Z^2 scaling. With this assumption the observed rate in DAMA differs from the upper limit in CDMS by 6.8σ\sigma. Under the conservative assumption that the modulation amplitude is 6% of the total rate we obtain upper limits on the modulation amplitude a factor of ~2 less than observed by DAMA, constraining some possible interpretations of this modulation.Comment: 4 pages, 3 figure

    Search for inelastic dark matter with the CDMS II experiment

    Get PDF
    Results are presented from a reanalysis of the entire five-tower data set acquired with the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory, with an exposure of 969 kg-days. The analysis window was extended to a recoil energy of 150 keV, and an improved surface-event background-rejection cut was defined to increase the sensitivity of the experiment to the inelastic dark matter (iDM) model. Three dark matter candidates were found between 25 keV and 150 keV. The probability to observe three or more background events in this energy range is 11%. Because of the occurrence of these events the constraints on the iDM parameter space are slightly less stringent than those from our previous analysis, which used an energy window of 10-100 keV.Comment: 10 pages, 10 figures, minor changes to match published version, conclusion unchange

    A Search for WIMPs with the First Five-Tower Data from CDMS

    Get PDF
    We report first results from the Cryogenic Dark Matter Search (CDMS II) experiment running with its full complement of 30 cryogenic particle detectors at the Soudan Underground Laboratory. This report is based on the analysis of data acquired between October 2006 and July 2007 from 15 Ge detectors (3.75 kg), giving an effective exposure of 121.3 kg-d (averaged over recoil energies 10--100 keV, weighted for a weakly interacting massive particle (WIMP) mass of 60 \gev). A blind analysis, incorporating improved techniques for event reconstruction and data quality monitoring, resulted in zero observed events. This analysis sets an upper limit on the WIMP-nucleon spin-independent cross section of 6.6×10−44\times10^{-44} cm2^2 (4.6×10−44\times10^{-44} cm2^2 when combined with previous CDMS Soudan data) at the 90% confidence level for a WIMP mass of 60 \gev. By providing the best sensitivity for dark matter WIMPs with masses above 42 GeV/c2^2, this work significantly restricts the parameter space for some of the favored supersymmetric models.Comment: 5 pages, 4 figures, submitted to PRL 28 March 200

    Results from a Low-Energy Analysis of the CDMS II Germanium Data

    Get PDF
    We report results from a reanalysis of data from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken between October 2006 and September 2008 using eight germanium detectors are reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased sensitivity to interactions from Weakly Interacting Massive Particles (WIMPs) with masses below ~10 GeV/c^2. This analysis provides stronger constraints than previous CDMS II results for WIMP masses below 9 GeV/c^2 and excludes parameter space associated with possible low-mass WIMP signals from the DAMA/LIBRA and CoGeNT experiments.Comment: 9 pages, 8 figures. Supplemental material included as ancillary files. v3) Added appendix with additional details regarding energy scale and background

    Optical Dissection of Neural Circuits Responsible for Drosophila Larval Locomotion with Halorhodopsin

    Get PDF
    Halorhodopsin (NpHR), a light-driven microbial chloride pump, enables silencing of neuronal function with superb temporal and spatial resolution. Here, we generated a transgenic line of Drosophila that drives expression of NpHR under control of the Gal4/UAS system. Then, we used it to dissect the functional properties of neural circuits that regulate larval peristalsis, a continuous wave of muscular contraction from posterior to anterior segments. We first demonstrate the effectiveness of NpHR by showing that global and continuous NpHR-mediated optical inhibition of motor neurons or sensory feedback neurons induce the same behavioral responses in crawling larvae to those elicited when the function of these neurons are inhibited by Shibirets, namely complete paralyses or slowed locomotion, respectively. We then applied transient and/or focused light stimuli to inhibit the activity of motor neurons in a more temporally and spatially restricted manner and studied the effects of the optical inhibition on peristalsis. When a brief light stimulus (1–10 sec) was applied to a crawling larva, the wave of muscular contraction stopped transiently but resumed from the halted position when the light was turned off. Similarly, when a focused light stimulus was applied to inhibit motor neurons in one or a few segments which were about to be activated in a dissected larva undergoing fictive locomotion, the propagation of muscular constriction paused during the light stimulus but resumed from the halted position when the inhibition (>5 sec) was removed. These results suggest that (1) Firing of motor neurons at the forefront of the wave is required for the wave to proceed to more anterior segments, and (2) The information about the phase of the wave, namely which segment is active at a given time, can be memorized in the neural circuits for several seconds

    Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device

    Get PDF
    Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision
    • …
    corecore