2 research outputs found

    Value CMR: Towards a comprehensive, rapid, cost-effective cardiovascular magnetic resonance imaging

    Get PDF
    Cardiac magnetic resonance imaging (CMR) is considered the gold standard for measuring cardiac function. Further, in a single CMR exam, information about cardiac structure, tissue composition, and blood flow could be obtained. Nevertheless, CMR is underutilized due to long scanning times, the need for multiple breath-holds, use of a contrast agent, and relatively high cost. In this work, we propose a rapid, comprehensive, contrast-free CMR exam that does not require repeated breath-holds, based on recent developments in imaging sequences. Time-consuming conventional sequences have been replaced by advanced sequences in the proposed CMR exam. Specifically, conventional 2D cine and phase-contrast (PC) sequences have been replaced by optimized 3D-cine and 4D-flow sequences, respectively. Furthermore, conventional myocardial tagging has been replaced by fast strain-encoding (SENC) imaging. Finally, T1 and T2 mapping sequences are included in the proposed exam, which allows for myocardial tissue characterization. The proposed rapid exam has been tested in vivo. The proposed exam reduced the scan time from \u3e1 hour with conventional sequences to \u3c20 minutes. Corresponding cardiovascular measurements from the proposed rapid CMR exam showed good agreement with those from conventional sequences and showed that they can differentiate between healthy volunteers and patients. Compared to 2D cine imaging that requires 12-16 separate breath-holds, the implemented 3D-cine sequence allows for whole heart coverage in 1-2 breath-holds. The 4D-flow sequence allows for whole-chest coverage in less than 10 minutes. Finally, SENC imaging reduces scan time to only one slice per heartbeat. In conclusion, the proposed rapid, contrast-free, and comprehensive cardiovascular exam does not require repeated breath-holds or to be supervised by a cardiac imager. These improvements make it tolerable by patients and would help improve cost effectiveness of CMR and increase its adoption in clinical practice

    COMPARISON OF MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY (MREIT) RECONSTRUCTION ALGORITHMS

    No full text
    Several algorithms have been proposed for image reconstruction in MREIT. These algorithms reconstruct conductivity distribution either directly from magnetic flux density measurements or from reconstructed current density distribution. In this study, performance of all major algorithms are evaluated and compared on a common platform, in terms of their reconstruction error, reconstruction time, perceptual image quality, immunity against measurement noise, required electrode size. J-Substitution (JS) and Hybrid J-Substitution algorithms have the best reconstruction accuracy but they are among the slowest. Another current density based algorithm, Equipotential Projection (EPP) algorithm along with magnetic flux density based B(z) Sensitivity (BzS) algorithm has moderate reconstruction accuracy. BzS algorithm is the fastest
    corecore