96 research outputs found

    Feynman path-integral approach to the QED3 theory of the pseudogap

    Get PDF
    In this work the connection between vortex condensation in a d-wave superconductor and the QED3_3 gauge theory of the pseudogap is elucidated. The approach taken circumvents the use of the standard Franz-Tesanovic gauge transformation, borrowing ideas from the path-integral analysis of the Aharonov-Bohm problem. An essential feature of this approach is that gauge-transformations which are prohibited on a particular multiply-connected manifold (e.g. a superconductor with vortices) can be successfully performed on the universal covering space associated with that manifold.Comment: 15 pages, 1 Figure. Int. J. Mod. Phys. B 17, 4509 (2003). Minor changes from previous versio

    The Interacting Impurity Josephson Junction: Variational Wavefunctions and Slave Boson Mean Field Theory

    Full text link
    We investigate the Josephson coupling between two superconductors mediated through an infinite U Anderson impurity, adapting a variational wavefunction approach which has proved successful for the Kondo model. Unlike the Kondo problem, however, a crossing of singlet and doublet state energies may be produced by varying the ratio of Kondo energy to superconducting gap, in agreement with recent work of Clerk and Ambegaokar. We construct the phase diagram for the junction and discuss properties of different phases. In addition, we find the singlet and doublet state energies within a slave boson mean field approach. We find the slave boson mean field treatment is unable to account for the level crossing.Comment: 5 pages; 4 encapsulated PostScript figures; submitted to Phys. Rev.

    A Γ\Gamma-matrix generalization of the Kitaev model

    Full text link
    We extend the Kitaev model defined for the Pauli-matrices to the Clifford algebra of Γ\Gamma-matrices, taking the 4×44 \times 4 representation as an example. On a decorated square lattice, the ground state spontaneously breaks time-reversal symmetry and exhibits a topological phase transition. The topologically non-trivial phase carries gapless chiral edge modes along the sample boundary. On the 3D diamond lattice, the ground states can exhibit gapless 3D Dirac cone-like excitations and gapped topological insulating states. Generalizations to even higher rank Γ\Gamma-matrices are also discussed.Comment: A revised versio
    • …
    corecore