4 research outputs found

    Magnetic suspension of the rotor of a ventricular assist device of mixed flow type

    No full text
    This work presents results of preliminary studies concerning application of magnetic bearing in a ventricular assist device (VAD) being developed by Dante Pazzanese Institute of Cardiology-IDPC (Sao Paulo, Brazil). The VAD-IDPC has a novel architecture that distinguishes from other known VADs. In this, the rotor has a conical geometry with spiral impellers, showing characteristics that are intermediate between a centrifugal VAD and an axial VAD. The effectiveness of this new type of blood pumping principle was showed by tests and by using it in heart surgery for external blood circulation. However, the developed VAD uses a combination of ball bearings and mechanical seals, limiting the life for some 10 h, making impossible its long-term use or its use as an implantable VAD. As a part of development of an implantable VAD, this work aims at the replacement of ball bearings by a magnetic bearing. The most important magnetic bearing principles are studied and the magnetic bearing developed by Escola Politecnica of Sao Paulo University (EPUSP-MB) is elected because of its very simple architecture. Besides presenting the principle of the EPUSP-MB, this work presents one possible alternative for applying the EPUSP-MB in the IDPC-VAD

    CLINICAL EVALUATION OF THE SPIRAL PUMP® AFTER IMPROVINGS TO THE ORIGINAL PROJECT IN PATIENTS SUBMITTED TO CARDIAC SURGERIES WITH CARDIO PULMONARY BY PASS

    No full text
    Objective: The objective of this paper is to present the results from Spiral Pump clinical trial after design modifications performed at its previous project. This pump applies axial end centrifugal hydraulic effects for blood pumping during cardiopulmonary bypass for patients under cardiac surgery. Methods: This study was performed in 52 patients (51% males), between 20 to 80 (67±14.4) years old weighing 53 to 102 (71.7±12.6) kg, mostly under myocardial revascularization surgery (34.6%) and valvular surgery (32.8%). Besides the routine evaluation of the data observed in these cases, we monitored pump rotational speed, blood flow, cardiopulmonary bypass duration, urine free hemoglobin for blood cell trauma analysis (+ to 4+), lactate desidrogenase (UI/L), fibrinogen level (mg/dL) and platelet count (nº/mm3). Results: Besides maintaining appropriate blood pressure and metabolic parameters it was also observed that the Free Hemoglobin levels remained normal, with a slight increase after 90 minutes of cardiopulmonary bypass. The Lactate Dehydrogenase showed an increase, with medians varying between 550-770 IU/L, whereas the decrease in Fibrinogen showed medians of 130-100 mg/dl. The number of platelets showed a slight decrease with the medians ranging from 240,000 to 200,000/mm3. No difficulty was observed during perfusion terminations, nor were there any immediate deaths, and all patients except one, were discharged in good condition. CONCLUSION: The Spiral Pump, as blood propeller during cardiopulmonary bypass, demonstrated to be reliable and safe, comprising in a good option as original and national product for this kind of application
    corecore